

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Home

Pillow

Pillow is the ‘friendly’ PIL fork by Alex Clark and Contributors. PIL is the Python Imaging Library by Fredrik Lundh and Contributors.

[image: Travis CI build status]
 [https://travis-ci.org/python-pillow/Pillow][image: Latest PyPI version]
 [https://pypi.python.org/pypi/Pillow/][image: Number of PyPI downloads]
 [https://pypi.python.org/pypi/Pillow/][image: Test coverage]
 [https://coveralls.io/r/python-pillow/Pillow?branch=master]To install Pillow, please follow the installation instructions. To download source and/or contribute to development of Pillow please see: https://github.com/python-pillow/Pillow.

	Installation
	Simple installation

	External libraries

	Build Options

	Linux installation

	Mac OS X installation

	Windows installation

	FreeBSD installation

	Platform support

	Old Versions

	About Pillow
	Goals

	License

	Why a fork?

	What about PIL?

	Guides
	Overview

	Tutorial

	Concepts

	Porting existing PIL-based code to Pillow

	Developer

	Reference
	Image Module

	ImageChops (“Channel Operations”) Module

	ImageColor Module

	ImageCms Module

	ImageDraw Module

	ImageEnhance Module

	ImageFile Module

	ImageFilter Module

	ImageFont Module

	ImageGrab Module (Windows-only)

	ImageMath Module

	ImageMorph Module

	ImageOps Module

	ImagePalette Module

	ImagePath Module

	ImageQt Module

	ImageSequence Module

	ImageStat Module

	ImageTk Module

	ImageWin Module (Windows-only)

	ExifTags Module

	OleFileIO Module

	PSDraw Module

	PixelAccess Class

	PyAccess Module

	PIL Package (autodoc of remaining modules)

	Appendices
	Image file formats

	Writing your own file decoder

	Release Notes
	Pillow 2.7.0

	Original PIL README

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

Installation

Warning

Pillow >= 2.1.0 no longer supports “import _imaging”. Please use “from PIL.Image import core as _imaging” instead.

Warning

Pillow >= 1.0 no longer supports “import Image”. Please use “from PIL import Image” instead.

Warning

PIL and Pillow currently cannot co-exist in the same environment.
If you want to use Pillow, please remove PIL first.

Note

Pillow >= 2.0.0 supports Python versions 2.6, 2.7, 3.2, 3.3, 3.4

Note

Pillow < 2.0.0 supports Python versions 2.4, 2.5, 2.6, 2.7.

Simple installation

Note

The following instructions will install Pillow with support for most formats.
See External libraries for the features you would gain by installing
the external libraries first. This page probably also include specific
instructions for your platform.

You can install Pillow with pip:

$ pip install Pillow

Or easy_install (for installing Python Eggs [http://peak.telecommunity.com/DevCenter/PythonEggs], as pip does
not support them):

$ easy_install Pillow

Or download the compressed archive from PyPI [https://pypi.python.org/pypi/Pillow], extract it, and inside it
run:

$ python setup.py install

External libraries

Note

You do not need to install all of the external libraries to use Pillow’s basic features.

Many of Pillow’s features require external libraries:

	libjpeg provides JPEG functionality.
	Pillow has been tested with libjpeg versions 6b, 8, and 9 and libjpeg-turbo version 8.

	zlib provides access to compressed PNGs

	libtiff provides compressed TIFF functionality
	Pillow has been tested with libtiff versions 3.x and 4.0

	libfreetype provides type related services

	littlecms provides color management
	Pillow version 2.2.1 and below uses liblcms1, Pillow 2.3.0 and
above uses liblcms2. Tested with 1.19 and 2.2.

	libwebp provides the WebP format.
	Pillow has been tested with version 0.1.3, which does not read
transparent WebP files. Versions 0.3.0 and 0.4.0 support
transparency.

	tcl/tk provides support for tkinter bitmap and photo images.

	openjpeg provides JPEG 2000 functionality.
	Pillow has been tested with openjpeg 2.0.0 and 2.1.0.

Once you have installed the prerequisites,run:

$ pip install Pillow

If the prerequisites are installed in the standard library locations
for your machine (e.g. /usr or /usr/local), no
additional configuration should be required. If they are installed in
a non-standard location, you may need to configure setuptools to use
those locations by editing setup.py or
setup.cfg, or by adding environment variables on the command
line:

$ CFLAGS="-I/usr/pkg/include" pip install pillow

Build Options

	Environment Variable: MAX_CONCURRENCY=n. By default, Pillow will
use multiprocessing to build the extension on all available CPUs,
but not more than 4. Setting MAX_CONCURRENCY to 1 will disable
parallel building.

	Build flags: --disable-zlib, --disable-jpeg,
--disable-tiff, --disable-freetype, --disable-tcl,
--disable-tk, --disable-lcms, --disable-webp,
--disable-webpmux, --disable-jpeg2000. Disable building the
corresponding feature even if the development libraries are present
on the building machine.

	Build flags: --enable-zlib, --enable-jpeg,
--enable-tiff, --enable-freetype, --enable-tcl,
--enable-tk, --enable-lcms, --enable-webp,
--enable-webpmux, --enable-jpeg2000. Require that the
corresponding feature is built. The build will raise an exception if
the libraries are not found. Webpmux (WebP metadata) relies on WebP
support. Tcl and Tk also must be used together.

Sample Usage:

$ MAX_CONCURRENCY=1 python setup.py build-ext --enable-[feature] install

Linux installation

Note

Fedora, Debian/Ubuntu, and ArchLinux include Pillow (instead of PIL) with
their distributions. Consider using those instead of installing manually.

We do not provide binaries for Linux. If you didn’t build Python from
source, make sure you have Python’s development libraries installed. In Debian
or Ubuntu:

$ sudo apt-get install python-dev python-setuptools

Or for Python 3:

$ sudo apt-get install python3-dev python3-setuptools

In Fedora, the command is:

$ sudo yum install python-devel

Prerequisites are installed on Ubuntu 12.04 LTS or Raspian Wheezy
7.0 with:

$ sudo apt-get install libtiff4-dev libjpeg8-dev zlib1g-dev \
 libfreetype6-dev liblcms2-dev libwebp-dev tcl8.5-dev tk8.5-dev python-tk

Prerequisites are installed on Ubuntu 14.04 LTS with:

$ sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev \
 libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk

Prerequisites are installed on Fedora 20 with:

$ sudo yum install libtiff-devel libjpeg-devel libzip-devel freetype-devel \
 lcms2-devel libwebp-devel tcl-devel tk-devel

Mac OS X installation

We provide binaries for OS X in the form of Python Wheels [http://wheel.readthedocs.org/en/latest/index.html]. Alternatively you can compile Pillow with with XCode.

The easiest way to install external libraries is via Homebrew [http://mxcl.github.com/homebrew/]. After you install Homebrew, run:

$ brew install libtiff libjpeg webp little-cms2

Install Pillow with:

$ pip install Pillow

Windows installation

We provide binaries for Windows in the form of Python Eggs and Python Wheels [http://wheel.readthedocs.org/en/latest/index.html]:

Python Eggs

Note

pip does not support Python Eggs; use easy_install
instead.

$ easy_install Pillow

Python Wheels

Note

Experimental. Requires setuptools >=0.8 and pip >=1.4.1

$ pip install --use-wheel Pillow

If the above does not work, it’s likely because we haven’t uploaded a
wheel for the latest version of Pillow. In that case, try pinning it
to a specific version:

$ pip install --use-wheel Pillow==2.6.1

FreeBSD installation

Note

Only FreeBSD 10 tested

Make sure you have Python’s development libraries installed.:

$ sudo pkg install python2

Or for Python 3:

$ sudo pkg install python3

Prerequisites are installed on FreeBSD 10 with:

$ sudo pkg install jpeg tiff webp lcms2 freetype2

Platform support

Current platform support for Pillow. Binary distributions are contributed for
each release on a volunteer basis, but the source should compile and run
everywhere platform support is listed. In general, we aim to support all
current versions of Linux, OS X, and Windows.

Note

Contributors please test on your platform, edit this document, and send a
pull request.

	Operating system
	Supported
	Tested Python versions
	Tested Pillow versions
	Tested processors

	Mac OS X 10.10 Yosemite
	
	
	
	x86-64

	Mac OS X 10.9 Mavericks
	Yes
	2.7,3.4
	2.6.1
	x86-64

	Mac OS X 10.8 Mountain Lion
	Yes
	2.6,2.7,3.2,3.3
	
	x86-64

	Redhat Linux 6
	Yes
	2.6
	
	x86

	CentOS 6.3
	Yes
	2.7,3.3
	
	x86

	Fedora 20
	Yes
	2.7,3.3
	2.3.0
	x86-64

	Ubuntu Linux 10.04 LTS
	Yes
	2.6
	2.3.0
	x86,x86-64

	Ubuntu Linux 12.04 LTS
	Yes
	2.6,2.7,3.2,3.3,PyPy2.4,
PyPy3,v2.3

2.7,3.2

	2.6.1

2.6.1

	x86,x86-64

ppc

	Ubuntu Linux 14.04 LTS
	Yes
	2.7,3.2,3.3,3.4
	2.3.0
	x86

	Raspian Wheezy
	Yes
	2.7,3.2
	2.3.0
	arm

	Gentoo Linux
	Yes
	2.7,3.2
	2.1.0
	x86-64

	FreeBSD 10
	Yes
	2.7,3.4
	2.4,2.3.1
	x86-64

	Windows 7 Pro
	Yes
	2.7,3.2,3.3
	2.2.1
	x86-64

	Windows Server 2008 R2 Enterprise
	Yes
	3.3
	
	x86-64

	Windows 8 Pro
	Yes
	2.6,2.7,3.2,3.3,3.4a3
	2.2.0
	x86,x86-64

	Windows 8.1 Pro
	Yes
	2.6,2.7,3.2,3.3,3.4
	2.3.0, 2.4.0
	x86,x86-64

Old Versions

You can download old distributions from PyPI [https://pypi.python.org/pypi/Pillow]. Only the latest 1.x and 2.x releases are visible, but all releases are available by direct URL access e.g. https://pypi.python.org/pypi/Pillow/1.0.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

About Pillow

Goals

The fork authors’ goal is to foster active development of PIL through:

	Continuous integration testing via Travis CI [https://travis-ci.org/python-pillow/Pillow]

	Publicized development activity on GitHub [https://github.com/python-pillow/Pillow]

	Regular releases to the Python Package Index [https://pypi.python.org/pypi/Pillow]

License

Like PIL itself, Pillow is licensed under the MIT-like PIL Software License <http://www.pythonware.com/products/pil/license.htm>:

Software License

The Python Imaging Library (PIL) is

 Copyright © 1997-2011 by Secret Labs AB
 Copyright © 1995-2011 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its associated documentation, you agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its associated documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appears in all copies, and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of Secret Labs AB or the author not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Why a fork?

PIL is not setuptools compatible. Please see this Image-SIG post [https://mail.python.org/pipermail/image-sig/2010-August/006480.html] for a more
detailed explanation. Also, PIL’s current bi-yearly (or greater) release
schedule is too infrequent to accommodate the large number and frequency of
issues reported.

What about PIL?

Note

Prior to Pillow 2.0.0, very few image code changes were made. Pillow 2.0.0
added Python 3 support and includes many bug fixes from many contributors.

As more time passes since the last PIL release, the likelihood of a new PIL
release decreases. However, we’ve yet to hear an official “PIL is dead”
announcement. So if you still want to support PIL, please
report issues here first [https://bitbucket.org/effbot/pil-2009-raclette/issues], then
open the corresponding Pillow tickets here [https://github.com/python-pillow/Pillow/issues].

Please provide a link to the PIL ticket so we can track the issue(s) upstream.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

Guides

	Overview
	Image Archives

	Image Display

	Image Processing

	Tutorial
	Using the Image class

	Reading and writing images

	Cutting, pasting, and merging images

	Geometrical transforms

	Color transforms

	Image enhancement

	Image sequences

	Postscript printing

	More on reading images

	Controlling the decoder

	Concepts
	Bands

	Modes

	Size

	Coordinate System

	Palette

	Info

	Filters

	Porting existing PIL-based code to Pillow

	Developer
	Release

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Overview

The Python Imaging Library adds image processing capabilities to your
Python interpreter.

This library provides extensive file format support, an efficient internal
representation, and fairly powerful image processing capabilities.

The core image library is designed for fast access to data stored in a few
basic pixel formats. It should provide a solid foundation for a general image
processing tool.

Let’s look at a few possible uses of this library.

Image Archives

The Python Imaging Library is ideal for image archival and batch processing
applications. You can use the library to create thumbnails, convert between
file formats, print images, etc.

The current version identifies and reads a large number of formats. Write
support is intentionally restricted to the most commonly used interchange and
presentation formats.

Image Display

The current release includes Tk PhotoImage and
BitmapImage interfaces, as well as a Windows
DIB interface that can be used with PythonWin and other
Windows-based toolkits. Many other GUI toolkits come with some kind of PIL
support.

For debugging, there’s also a show() method which saves an image to
disk, and calls an external display utility.

Image Processing

The library contains basic image processing functionality, including point operations, filtering with a set of built-in convolution kernels, and colour space conversions.

The library also supports image resizing, rotation and arbitrary affine transforms.

There’s a histogram method allowing you to pull some statistics out of an image. This can be used for automatic contrast enhancement, and for global statistical analysis.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Tutorial

Using the Image class

The most important class in the Python Imaging Library is the
Image class, defined in the module with the same name.
You can create instances of this class in several ways; either by loading
images from files, processing other images, or creating images from scratch.

To load an image from a file, use the open() function
in the Image module:

>>> from PIL import Image
>>> im = Image.open("lena.ppm")

If successful, this function returns an Image object.
You can now use instance attributes to examine the file contents:

>>> from __future__ import print_function
>>> print(im.format, im.size, im.mode)
PPM (512, 512) RGB

The format attribute identifies the source of an
image. If the image was not read from a file, it is set to None. The size
attribute is a 2-tuple containing width and height (in pixels). The
mode attribute defines the number and names of the
bands in the image, and also the pixel type and depth. Common modes are “L”
(luminance) for greyscale images, “RGB” for true color images, and “CMYK” for
pre-press images.

If the file cannot be opened, an IOError exception is raised.

Once you have an instance of the Image class, you can use
the methods defined by this class to process and manipulate the image. For
example, let’s display the image we just loaded:

>>> im.show()

Note

The standard version of show() is not very
efficient, since it saves the image to a temporary file and calls the
xv utility to display the image. If you don’t have xv
installed, it won’t even work. When it does work though, it is very handy
for debugging and tests.

The following sections provide an overview of the different functions provided in this library.

Reading and writing images

The Python Imaging Library supports a wide variety of image file formats. To
read files from disk, use the open() function in the
Image module. You don’t have to know the file format to open a
file. The library automatically determines the format based on the contents of
the file.

To save a file, use the save() method of the
Image class. When saving files, the name becomes
important. Unless you specify the format, the library uses the filename
extension to discover which file storage format to use.

Convert files to JPEG

from __future__ import print_function
import os, sys
from PIL import Image

for infile in sys.argv[1:]:
 f, e = os.path.splitext(infile)
 outfile = f + ".jpg"
 if infile != outfile:
 try:
 Image.open(infile).save(outfile)
 except IOError:
 print("cannot convert", infile)

A second argument can be supplied to the save()
method which explicitly specifies a file format. If you use a non-standard
extension, you must always specify the format this way:

Create JPEG thumbnails

from __future__ import print_function
import os, sys
from PIL import Image

size = (128, 128)

for infile in sys.argv[1:]:
 outfile = os.path.splitext(infile)[0] + ".thumbnail"
 if infile != outfile:
 try:
 im = Image.open(infile)
 im.thumbnail(size)
 im.save(outfile, "JPEG")
 except IOError:
 print("cannot create thumbnail for", infile)

It is important to note that the library doesn’t decode or load the raster data
unless it really has to. When you open a file, the file header is read to
determine the file format and extract things like mode, size, and other
properties required to decode the file, but the rest of the file is not
processed until later.

This means that opening an image file is a fast operation, which is independent
of the file size and compression type. Here’s a simple script to quickly
identify a set of image files:

Identify Image Files

from __future__ import print_function
import sys
from PIL import Image

for infile in sys.argv[1:]:
 try:
 with Image.open(infile) as im:
 print(infile, im.format, "%dx%d" % im.size, im.mode)
 except IOError:
 pass

Cutting, pasting, and merging images

The Image class contains methods allowing you to
manipulate regions within an image. To extract a sub-rectangle from an image,
use the crop() method.

Copying a subrectangle from an image

box = (100, 100, 400, 400)
region = im.crop(box)

The region is defined by a 4-tuple, where coordinates are (left, upper, right,
lower). The Python Imaging Library uses a coordinate system with (0, 0) in the
upper left corner. Also note that coordinates refer to positions between the
pixels, so the region in the above example is exactly 300x300 pixels.

The region could now be processed in a certain manner and pasted back.

Processing a subrectangle, and pasting it back

region = region.transpose(Image.ROTATE_180)
im.paste(region, box)

When pasting regions back, the size of the region must match the given region
exactly. In addition, the region cannot extend outside the image. However, the
modes of the original image and the region do not need to match. If they don’t,
the region is automatically converted before being pasted (see the section on
Color transforms below for details).

Here’s an additional example:

Rolling an image

def roll(image, delta):
 "Roll an image sideways"

 xsize, ysize = image.size

 delta = delta % xsize
 if delta == 0: return image

 part1 = image.crop((0, 0, delta, ysize))
 part2 = image.crop((delta, 0, xsize, ysize))
 image.paste(part2, (0, 0, xsize-delta, ysize))
 image.paste(part1, (xsize-delta, 0, xsize, ysize))

 return image

For more advanced tricks, the paste method can also take a transparency mask as
an optional argument. In this mask, the value 255 indicates that the pasted
image is opaque in that position (that is, the pasted image should be used as
is). The value 0 means that the pasted image is completely transparent. Values
in-between indicate different levels of transparency.

The Python Imaging Library also allows you to work with the individual bands of
an multi-band image, such as an RGB image. The split method creates a set of
new images, each containing one band from the original multi-band image. The
merge function takes a mode and a tuple of images, and combines them into a new
image. The following sample swaps the three bands of an RGB image:

Splitting and merging bands

r, g, b = im.split()
im = Image.merge("RGB", (b, g, r))

Note that for a single-band image, split() returns
the image itself. To work with individual color bands, you may want to convert
the image to “RGB” first.

Geometrical transforms

The PIL.Image.Image class contains methods to
resize() and rotate() an
image. The former takes a tuple giving the new size, the latter the angle in
degrees counter-clockwise.

Simple geometry transforms

out = im.resize((128, 128))
out = im.rotate(45) # degrees counter-clockwise

To rotate the image in 90 degree steps, you can either use the
rotate() method or the
transpose() method. The latter can also be used to
flip an image around its horizontal or vertical axis.

Transposing an image

out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)

There’s no difference in performance or result between transpose(ROTATE)
and corresponding rotate() operations.

A more general form of image transformations can be carried out via the
transform() method.

Color transforms

The Python Imaging Library allows you to convert images between different pixel
representations using the convert() method.

Converting between modes

im = Image.open("lena.ppm").convert("L")

The library supports transformations between each supported mode and the “L”
and “RGB” modes. To convert between other modes, you may have to use an
intermediate image (typically an “RGB” image).

Image enhancement

The Python Imaging Library provides a number of methods and modules that can be
used to enhance images.

Filters

The ImageFilter module contains a number of pre-defined
enhancement filters that can be used with the
filter() method.

Applying filters

from PIL import ImageFilter
out = im.filter(ImageFilter.DETAIL)

Point Operations

The point() method can be used to translate the pixel
values of an image (e.g. image contrast manipulation). In most cases, a
function object expecting one argument can be passed to this method. Each
pixel is processed according to that function:

Applying point transforms

multiply each pixel by 1.2
out = im.point(lambda i: i * 1.2)

Using the above technique, you can quickly apply any simple expression to an
image. You can also combine the point() and
paste() methods to selectively modify an image:

Processing individual bands

split the image into individual bands
source = im.split()

R, G, B = 0, 1, 2

select regions where red is less than 100
mask = source[R].point(lambda i: i < 100 and 255)

process the green band
out = source[G].point(lambda i: i * 0.7)

paste the processed band back, but only where red was < 100
source[G].paste(out, None, mask)

build a new multiband image
im = Image.merge(im.mode, source)

Note the syntax used to create the mask:

imout = im.point(lambda i: expression and 255)

Python only evaluates the portion of a logical expression as is necessary to
determine the outcome, and returns the last value examined as the result of the
expression. So if the expression above is false (0), Python does not look at
the second operand, and thus returns 0. Otherwise, it returns 255.

Enhancement

For more advanced image enhancement, you can use the classes in the
ImageEnhance module. Once created from an image, an enhancement
object can be used to quickly try out different settings.

You can adjust contrast, brightness, color balance and sharpness in this way.

Enhancing images

from PIL import ImageEnhance

enh = ImageEnhance.Contrast(im)
enh.enhance(1.3).show("30% more contrast")

Image sequences

The Python Imaging Library contains some basic support for image sequences
(also called animation formats). Supported sequence formats include FLI/FLC,
GIF, and a few experimental formats. TIFF files can also contain more than one
frame.

When you open a sequence file, PIL automatically loads the first frame in the
sequence. You can use the seek and tell methods to move between different
frames:

Reading sequences

from PIL import Image

im = Image.open("animation.gif")
im.seek(1) # skip to the second frame

try:
 while 1:
 im.seek(im.tell()+1)
 # do something to im
except EOFError:
 pass # end of sequence

As seen in this example, you’ll get an EOFError exception when the
sequence ends.

Note that most drivers in the current version of the library only allow you to
seek to the next frame (as in the above example). To rewind the file, you may
have to reopen it.

The following iterator class lets you use the for-statement to loop over the
sequence:

A sequence iterator class

class ImageSequence:
 def __init__(self, im):
 self.im = im
 def __getitem__(self, ix):
 try:
 if ix:
 self.im.seek(ix)
 return self.im
 except EOFError:
 raise IndexError # end of sequence

for frame in ImageSequence(im):
 # ...do something to frame...

Postscript printing

The Python Imaging Library includes functions to print images, text and
graphics on Postscript printers. Here’s a simple example:

Drawing Postscript

from PIL import Image
from PIL import PSDraw

im = Image.open("lena.ppm")
title = "lena"
box = (1*72, 2*72, 7*72, 10*72) # in points

ps = PSDraw.PSDraw() # default is sys.stdout
ps.begin_document(title)

draw the image (75 dpi)
ps.image(box, im, 75)
ps.rectangle(box)

draw title
ps.setfont("HelveticaNarrow-Bold", 36)
ps.text((3*72, 4*72), title)

ps.end_document()

More on reading images

As described earlier, the open() function of the
Image module is used to open an image file. In most cases, you
simply pass it the filename as an argument:

im = Image.open("lena.ppm")

If everything goes well, the result is an PIL.Image.Image object.
Otherwise, an IOError exception is raised.

You can use a file-like object instead of the filename. The object must
implement read() [http://docs.python.org/2/library/stdtypes.html#file.read], seek() [http://docs.python.org/2/library/stdtypes.html#file.seek] and
tell() [http://docs.python.org/2/library/stdtypes.html#file.tell] methods, and be opened in binary mode.

Reading from an open file

fp = open("lena.ppm", "rb")
im = Image.open(fp)

To read an image from string data, use the StringIO [http://docs.python.org/2/library/stringio.html#StringIO.StringIO]
class:

Reading from a string

import StringIO

im = Image.open(StringIO.StringIO(buffer))

Note that the library rewinds the file (using seek(0)) before reading the
image header. In addition, seek will also be used when the image data is read
(by the load method). If the image file is embedded in a larger file, such as a
tar file, you can use the ContainerIO or
TarIO modules to access it.

Reading from a tar archive

from PIL import TarIO

fp = TarIO.TarIO("Imaging.tar", "Imaging/test/lena.ppm")
im = Image.open(fp)

Controlling the decoder

Some decoders allow you to manipulate the image while reading it from a file.
This can often be used to speed up decoding when creating thumbnails (when
speed is usually more important than quality) and printing to a monochrome
laser printer (when only a greyscale version of the image is needed).

The draft() method manipulates an opened but not yet
loaded image so it as closely as possible matches the given mode and size. This
is done by reconfiguring the image decoder.

Reading in draft mode

from __future__ import print_function
im = Image.open(file)
print("original =", im.mode, im.size)

im.draft("L", (100, 100))
print("draft =", im.mode, im.size)

This prints something like:

original = RGB (512, 512)
draft = L (128, 128)

Note that the resulting image may not exactly match the requested mode and
size. To make sure that the image is not larger than the given size, use the
thumbnail method instead.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Concepts

The Python Imaging Library handles raster images; that is, rectangles of
pixel data.

Bands

An image can consist of one or more bands of data. The Python Imaging Library
allows you to store several bands in a single image, provided they all have the
same dimensions and depth.

To get the number and names of bands in an image, use the
getbands() method.

Modes

The mode of an image defines the type and depth of a pixel in the
image. The current release supports the following standard modes:

	1 (1-bit pixels, black and white, stored with one pixel per byte)

	L (8-bit pixels, black and white)

	P (8-bit pixels, mapped to any other mode using a color palette)

	RGB (3x8-bit pixels, true color)

	RGBA (4x8-bit pixels, true color with transparency mask)

	CMYK (4x8-bit pixels, color separation)

	YCbCr (3x8-bit pixels, color video format)

	LAB (3x8-bit pixels, the L*a*b color space)

	HSV (3x8-bit pixels, Hue, Saturation, Value color space)

	I (32-bit signed integer pixels)

	F (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including LA (L
with alpha), RGBX (true color with padding) and RGBa (true color with
premultiplied alpha). However, PIL doesn’t support user-defined modes; if you
to handle band combinations that are not listed above, use a sequence of Image
objects.

You can read the mode of an image through the mode
attribute. This is a string containing one of the above values.

Size

You can read the image size through the size
attribute. This is a 2-tuple, containing the horizontal and vertical size in
pixels.

Coordinate System

The Python Imaging Library uses a Cartesian pixel coordinate system, with (0,0)
in the upper left corner. Note that the coordinates refer to the implied pixel
corners; the centre of a pixel addressed as (0, 0) actually lies at (0.5, 0.5).

Coordinates are usually passed to the library as 2-tuples (x, y). Rectangles
are represented as 4-tuples, with the upper left corner given first. For
example, a rectangle covering all of an 800x600 pixel image is written as (0,
0, 800, 600).

Palette

The palette mode (P) uses a color palette to define the actual color for
each pixel.

Info

You can attach auxiliary information to an image using the
info attribute. This is a dictionary object.

How such information is handled when loading and saving image files is up to
the file format handler (see the chapter on Image file formats). Most
handlers add properties to the info attribute when
loading an image, but ignore it when saving images.

Filters

For geometry operations that may map multiple input pixels to a single output
pixel, the Python Imaging Library provides four different resampling filters.

	NEAREST

	Pick the nearest pixel from the input image. Ignore all other input pixels.

	BILINEAR

	For resize calculate the output pixel value using linear interpolation
on all pixels that may contribute to the output value.
For other transformations linear interpolation over a 2x2 environment
in the input image is used.

	BICUBIC

	For resize calculate the output pixel value using cubic interpolation
on all pixels that may contribute to the output value.
For other transformations cubic interpolation over a 4x4 environment
in the input image is used.

	LANCZOS

	Calculate the output pixel value using a high-quality Lanczos filter (a
truncated sinc) on all pixels that may contribute to the output value. In
the current version of PIL, this filter can only be used with the resize
and thumbnail methods.

New in version 1.1.3.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Porting existing PIL-based code to Pillow

Pillow is a functional drop-in replacement for the Python Imaging Library. To
run your existing PIL-compatible code with Pillow, it needs to be modified to
import the Image module from the PIL namespace instead of the
global namespace. Change this:

import Image

to this:

from PIL import Image

The _imaging module has been moved. You can now import it like this:

from PIL.Image import core as _imaging

The image plugin loading mechanism has changed. Pillow no longer
automatically imports any file in the Python path with a name ending
in ImagePlugin.py. You will need to import your image plugin
manually.

Pillow will raise an exception if the core extension can’t be loaded
for any reason, including a version mismatch between the Python and
extension code. Previously PIL allowed Python only code to run if the
core extension was not available.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Developer

Note

When committing only trivial changes, please include [ci skip] in the commit message to avoid running tests on Travis-CI. Thank you!

Release

Details about making a Pillow release.

Version number

The version number is currently stored in 3 places:

PIL/__init__.py _imaging.c setup.py

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

Reference

	Image Module
	Examples

	Functions

	The Image Class

	Attributes

	ImageChops (“Channel Operations”) Module
	Functions

	ImageColor Module
	Color Names

	Functions

	ImageCms Module

	ImageDraw Module
	Example: Draw a gray cross over an image

	Concepts

	Example: Draw Partial Opacity Text

	Functions

	Methods

	Legacy API

	ImageEnhance Module
	Example: Vary the sharpness of an image

	Classes

	ImageFile Module
	Example: Parse an image

	Parser

	ImageFilter Module
	Example: Filter an image

	Filters

	ImageFont Module
	Example

	Functions

	Methods

	ImageGrab Module (Windows-only)

	ImageMath Module
	Example: Using the ImageMath module

	Expression syntax

	ImageMorph Module

	ImageOps Module

	ImagePalette Module

	ImagePath Module

	ImageQt Module

	ImageSequence Module
	Extracting frames from an animation

	The Iterator class

	ImageStat Module

	ImageTk Module

	ImageWin Module (Windows-only)

	ExifTags Module

	OleFileIO Module
	How to use this module

	How to contribute

	How to report bugs

	Classes and Methods

	PSDraw Module

	PixelAccess Class
	Example

	PixelAccess Class

	PyAccess Module
	Example

	PyAccess Class

	PIL Package (autodoc of remaining modules)
	BdfFontFile Module

	ContainerIO Module

	FontFile Module

	GdImageFile Module

	GimpGradientFile Module

	GimpPaletteFile Module

	ImageDraw2 Module

	ImageFileIO Module

	ImageShow Module

	ImageTransform Module

	JpegPresets Module

	PaletteFile Module

	PcfFontFile Module

	PngImagePlugin.iTXt Class

	PngImagePlugin.PngInfo Class

	TarIO Module

	TiffTags Module

	WalImageFile Module

	_binary Module

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

Image Module

The Image module provides a class with the same name which is
used to represent a PIL image. The module also provides a number of factory
functions, including functions to load images from files, and to create new
images.

Examples

The following script loads an image, rotates it 45 degrees, and displays it
using an external viewer (usually xv on Unix, and the paint program on
Windows).

Open, rotate, and display an image (using the default viewer)

from PIL import Image
im = Image.open("bride.jpg")
im.rotate(45).show()

The following script creates nice 128x128 thumbnails of all JPEG images in the
current directory.

Create thumbnails

from PIL import Image
import glob, os

size = 128, 128

for infile in glob.glob("*.jpg"):
 file, ext = os.path.splitext(infile)
 im = Image.open(infile)
 im.thumbnail(size)
 im.save(file + ".thumbnail", "JPEG")

Functions

	
PIL.Image.open(fp, mode='r')

	Opens and identifies the given image file.

This is a lazy operation; this function identifies the file, but
the file remains open and the actual image data is not read from
the file until you try to process the data (or call the
load() method). See
new().

	Parameters:	
	file – A filename (string) or a file object. The file object
must implement read() [http://docs.python.org/2/library/stdtypes.html#file.read], seek() [http://docs.python.org/2/library/stdtypes.html#file.seek], and
tell() [http://docs.python.org/2/library/stdtypes.html#file.tell] methods, and be opened in binary mode.

	mode – The mode. If given, this argument must be “r”.

	Returns:	An Image object.

	Raises IOError:	If the file cannot be found, or the image cannot be
opened and identified.

Warning

To protect against potential DOS attacks caused by “decompression bombs [https://en.wikipedia.org/wiki/Zip_bomb]” (i.e. malicious files which decompress into a huge amount of data and are designed to crash or cause disruption by using up a lot of memory), Pillow will issue a DecompressionBombWarning if the image is over a certain limit. If desired, the warning can be turned into an error with warnings.simplefilter(‘error’, Image.DecompressionBombWarning) or suppressed entirely with warnings.simplefilter(‘ignore’, Image.DecompressionBombWarning). See also the logging documentation [https://docs.python.org/2/library/logging.html?highlight=logging#integration-with-the-warnings-module] to have warnings output to the logging facility instead of stderr.

Image processing

	
PIL.Image.alpha_composite(im1, im2)

	Alpha composite im2 over im1.

	Parameters:	
	im1 – The first image.

	im2 – The second image. Must have the same mode and size as
the first image.

	Returns:	An Image object.

	
PIL.Image.blend(im1, im2, alpha)

	Creates a new image by interpolating between two input images, using
a constant alpha.:

out = image1 * (1.0 - alpha) + image2 * alpha

	Parameters:	
	im1 – The first image.

	im2 – The second image. Must have the same mode and size as
the first image.

	alpha – The interpolation alpha factor. If alpha is 0.0, a
copy of the first image is returned. If alpha is 1.0, a copy of
the second image is returned. There are no restrictions on the
alpha value. If necessary, the result is clipped to fit into
the allowed output range.

	Returns:	An Image object.

	
PIL.Image.composite(image1, image2, mask)

	Create composite image by blending images using a transparency mask.

	Parameters:	
	image1 – The first image.

	image2 – The second image. Must have the same mode and
size as the first image.

	mask – A mask image. This image can have mode
“1”, “L”, or “RGBA”, and must have the same size as the
other two images.

	
PIL.Image.eval(image, *args)

	Applies the function (which should take one argument) to each pixel
in the given image. If the image has more than one band, the same
function is applied to each band. Note that the function is
evaluated once for each possible pixel value, so you cannot use
random components or other generators.

	Parameters:	
	image – The input image.

	function – A function object, taking one integer argument.

	Returns:	An Image object.

	
PIL.Image.merge(mode, bands)

	Merge a set of single band images into a new multiband image.

	Parameters:	
	mode – The mode to use for the output image. See:
Modes.

	bands – A sequence containing one single-band image for
each band in the output image. All bands must have the
same size.

	Returns:	An Image object.

Constructing images

	
PIL.Image.new(mode, size, color=0)

	Creates a new image with the given mode and size.

	Parameters:	
	mode – The mode to use for the new image. See:
Modes.

	size – A 2-tuple, containing (width, height) in pixels.

	color – What color to use for the image. Default is black.
If given, this should be a single integer or floating point value
for single-band modes, and a tuple for multi-band modes (one value
per band). When creating RGB images, you can also use color
strings as supported by the ImageColor module. If the color is
None, the image is not initialised.

	Returns:	An Image object.

	
PIL.Image.fromarray(obj, mode=None)

	Creates an image memory from an object exporting the array interface
(using the buffer protocol).

If obj is not contiguous, then the tobytes method is called
and frombuffer() is used.

	Parameters:	
	obj – Object with array interface

	mode – Mode to use (will be determined from type if None)
See: Modes.

	Returns:	An image object.

New in version 1.1.6.

	
PIL.Image.frombytes(mode, size, data, decoder_name='raw', *args)

	Creates a copy of an image memory from pixel data in a buffer.

In its simplest form, this function takes three arguments
(mode, size, and unpacked pixel data).

You can also use any pixel decoder supported by PIL. For more
information on available decoders, see the section
Writing Your Own File Decoder.

Note that this function decodes pixel data only, not entire images.
If you have an entire image in a string, wrap it in a
BytesIO [http://docs.python.org/2/library/io.html#io.BytesIO] object, and use open() to load
it.

	Parameters:	
	mode – The image mode. See: Modes.

	size – The image size.

	data – A byte buffer containing raw data for the given mode.

	decoder_name – What decoder to use.

	args – Additional parameters for the given decoder.

	Returns:	An Image object.

	
PIL.Image.fromstring(*args, **kw)

	Deprecated alias to frombytes.

Deprecated since version 2.0.

	
PIL.Image.frombuffer(mode, size, data, decoder_name='raw', *args)

	Creates an image memory referencing pixel data in a byte buffer.

This function is similar to frombytes(), but uses data
in the byte buffer, where possible. This means that changes to the
original buffer object are reflected in this image). Not all modes can
share memory; supported modes include “L”, “RGBX”, “RGBA”, and “CMYK”.

Note that this function decodes pixel data only, not entire images.
If you have an entire image file in a string, wrap it in a
BytesIO object, and use open() to load it.

In the current version, the default parameters used for the “raw” decoder
differs from that used for fromstring(). This is a
bug, and will probably be fixed in a future release. The current release
issues a warning if you do this; to disable the warning, you should provide
the full set of parameters. See below for details.

	Parameters:	
	mode – The image mode. See: Modes.

	size – The image size.

	data – A bytes or other buffer object containing raw
data for the given mode.

	decoder_name – What decoder to use.

	args – Additional parameters for the given decoder. For the
default encoder (“raw”), it’s recommended that you provide the
full set of parameters:

frombuffer(mode, size, data, "raw", mode, 0, 1)

	Returns:	An Image object.

New in version 1.1.4.

Registering plugins

Note

These functions are for use by plugin authors. Application authors can
ignore them.

	
PIL.Image.register_open(id, factory, accept=None)

	Register an image file plugin. This function should not be used
in application code.

	Parameters:	
	id – An image format identifier.

	factory – An image file factory method.

	accept – An optional function that can be used to quickly
reject images having another format.

	
PIL.Image.register_mime(id, mimetype)

	Registers an image MIME type. This function should not be used
in application code.

	Parameters:	
	id – An image format identifier.

	mimetype – The image MIME type for this format.

	
PIL.Image.register_save(id, driver)

	Registers an image save function. This function should not be
used in application code.

	Parameters:	
	id – An image format identifier.

	driver – A function to save images in this format.

	
PIL.Image.register_extension(id, extension)

	Registers an image extension. This function should not be
used in application code.

	Parameters:	
	id – An image format identifier.

	extension – An extension used for this format.

The Image Class

	
class PIL.Image.Image

	This class represents an image object. To create
Image objects, use the appropriate factory
functions. There’s hardly ever any reason to call the Image constructor
directly.

	open()

	new()

	frombytes()

An instance of the Image class has the following
methods. Unless otherwise stated, all methods return a new instance of the
Image class, holding the resulting image.

	
Image.convert(mode=None, matrix=None, dither=None, palette=0, colors=256)

	Returns a converted copy of this image. For the “P” mode, this
method translates pixels through the palette. If mode is
omitted, a mode is chosen so that all information in the image
and the palette can be represented without a palette.

The current version supports all possible conversions between
“L”, “RGB” and “CMYK.” The matrix argument only supports “L”
and “RGB”.

When translating a color image to black and white (mode “L”),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

The default method of converting a greyscale (“L”) or “RGB”
image into a bilevel (mode “1”) image uses Floyd-Steinberg
dither to approximate the original image luminosity levels. If
dither is NONE, all non-zero values are set to 255 (white). To
use other thresholds, use the point()
method.

	Parameters:	
	mode – The requested mode. See: Modes.

	matrix – An optional conversion matrix. If given, this
should be 4- or 16-tuple containing floating point values.

	dither – Dithering method, used when converting from
mode “RGB” to “P” or from “RGB” or “L” to “1”.
Available methods are NONE or FLOYDSTEINBERG (default).

	palette – Palette to use when converting from mode “RGB”
to “P”. Available palettes are WEB or ADAPTIVE.

	colors – Number of colors to use for the ADAPTIVE palette.
Defaults to 256.

	Return type:	Image

	Returns:	An Image object.

The following example converts an RGB image (linearly calibrated according to
ITU-R 709, using the D65 luminant) to the CIE XYZ color space:

rgb2xyz = (
 0.412453, 0.357580, 0.180423, 0,
 0.212671, 0.715160, 0.072169, 0,
 0.019334, 0.119193, 0.950227, 0)
out = im.convert("RGB", rgb2xyz)

	
Image.copy()

	Copies this image. Use this method if you wish to paste things
into an image, but still retain the original.

	Return type:	Image

	Returns:	An Image object.

	
Image.crop(box=None)

	Returns a rectangular region from this image. The box is a
4-tuple defining the left, upper, right, and lower pixel
coordinate.

This is a lazy operation. Changes to the source image may or
may not be reflected in the cropped image. To break the
connection, call the load() method on
the cropped copy.

	Parameters:	box – The crop rectangle, as a (left, upper, right, lower)-tuple.

	Return type:	Image

	Returns:	An Image object.

	
Image.draft(mode, size)

	Configures the image file loader so it returns a version of the
image that as closely as possible matches the given mode and
size. For example, you can use this method to convert a color
JPEG to greyscale while loading it, or to extract a 128x192
version from a PCD file.

Note that this method modifies the Image object
in place. If the image has already been loaded, this method has no
effect.

	Parameters:	
	mode – The requested mode.

	size – The requested size.

	
Image.filter(filter)

	Filters this image using the given filter. For a list of
available filters, see the ImageFilter module.

	Parameters:	filter – Filter kernel.

	Returns:	An Image object.

	
Image.getbands()

	Returns a tuple containing the name of each band in this image.
For example, getbands on an RGB image returns (“R”, “G”, “B”).

	Returns:	A tuple containing band names.

	Return type:	tuple [http://docs.python.org/2/library/functions.html#tuple]

	
Image.getbbox()

	Calculates the bounding box of the non-zero regions in the
image.

	Returns:	The bounding box is returned as a 4-tuple defining the
left, upper, right, and lower pixel coordinate. If the image
is completely empty, this method returns None.

	
Image.getcolors(maxcolors=256)

	Returns a list of colors used in this image.

	Parameters:	maxcolors – Maximum number of colors. If this number is
exceeded, this method returns None. The default limit is
256 colors.

	Returns:	An unsorted list of (count, pixel) values.

	
Image.getdata(band=None)

	Returns the contents of this image as a sequence object
containing pixel values. The sequence object is flattened, so
that values for line one follow directly after the values of
line zero, and so on.

Note that the sequence object returned by this method is an
internal PIL data type, which only supports certain sequence
operations. To convert it to an ordinary sequence (e.g. for
printing), use list(im.getdata()).

	Parameters:	band – What band to return. The default is to return
all bands. To return a single band, pass in the index
value (e.g. 0 to get the “R” band from an “RGB” image).

	Returns:	A sequence-like object.

	
Image.getextrema()

	Gets the the minimum and maximum pixel values for each band in
the image.

	Returns:	For a single-band image, a 2-tuple containing the
minimum and maximum pixel value. For a multi-band image,
a tuple containing one 2-tuple for each band.

	
Image.getpalette()

	Returns the image palette as a list.

	Returns:	A list of color values [r, g, b, ...], or None if the
image has no palette.

	
Image.getpixel(xy)

	Returns the pixel value at a given position.

	Parameters:	xy – The coordinate, given as (x, y).

	Returns:	The pixel value. If the image is a multi-layer image,
this method returns a tuple.

	
Image.histogram(mask=None, extrema=None)

	Returns a histogram for the image. The histogram is returned as
a list of pixel counts, one for each pixel value in the source
image. If the image has more than one band, the histograms for
all bands are concatenated (for example, the histogram for an
“RGB” image contains 768 values).

A bilevel image (mode “1”) is treated as a greyscale (“L”) image
by this method.

If a mask is provided, the method returns a histogram for those
parts of the image where the mask image is non-zero. The mask
image must have the same size as the image, and be either a
bi-level image (mode “1”) or a greyscale image (“L”).

	Parameters:	mask – An optional mask.

	Returns:	A list containing pixel counts.

	
Image.offset(xoffset, yoffset=None)

	
Deprecated since version 2.0.

Note

New code should use PIL.ImageChops.offset().

Returns a copy of the image where the data has been offset by the given
distances. Data wraps around the edges. If yoffset is omitted, it
is assumed to be equal to xoffset.

	Parameters:	
	xoffset – The horizontal distance.

	yoffset – The vertical distance. If omitted, both
distances are set to the same value.

	Returns:	An Image object.

	
Image.paste(im, box=None, mask=None)

	Pastes another image into this image. The box argument is either
a 2-tuple giving the upper left corner, a 4-tuple defining the
left, upper, right, and lower pixel coordinate, or None (same as
(0, 0)). If a 4-tuple is given, the size of the pasted image
must match the size of the region.

If the modes don’t match, the pasted image is converted to the mode of
this image (see the convert() method for
details).

Instead of an image, the source can be a integer or tuple
containing pixel values. The method then fills the region
with the given color. When creating RGB images, you can
also use color strings as supported by the ImageColor module.

If a mask is given, this method updates only the regions
indicated by the mask. You can use either “1”, “L” or “RGBA”
images (in the latter case, the alpha band is used as mask).
Where the mask is 255, the given image is copied as is. Where
the mask is 0, the current value is preserved. Intermediate
values can be used for transparency effects.

Note that if you paste an “RGBA” image, the alpha band is
ignored. You can work around this by using the same image as
both source image and mask.

	Parameters:	
	im – Source image or pixel value (integer or tuple).

	box – An optional 4-tuple giving the region to paste into.
If a 2-tuple is used instead, it’s treated as the upper left
corner. If omitted or None, the source is pasted into the
upper left corner.

If an image is given as the second argument and there is no
third, the box defaults to (0, 0), and the second argument
is interpreted as a mask image.

	mask – An optional mask image.

	
Image.point(lut, mode=None)

	Maps this image through a lookup table or function.

	Parameters:	
	lut – A lookup table, containing 256 (or 65336 if
self.mode==”I” and mode == “L”) values per band in the
image. A function can be used instead, it should take a
single argument. The function is called once for each
possible pixel value, and the resulting table is applied to
all bands of the image.

	mode – Output mode (default is same as input). In the
current version, this can only be used if the source image
has mode “L” or “P”, and the output has mode “1” or the
source image mode is “I” and the output mode is “L”.

	Returns:	An Image object.

	
Image.putalpha(alpha)

	Adds or replaces the alpha layer in this image. If the image
does not have an alpha layer, it’s converted to “LA” or “RGBA”.
The new layer must be either “L” or “1”.

	Parameters:	alpha – The new alpha layer. This can either be an “L” or “1”
image having the same size as this image, or an integer or
other color value.

	
Image.putdata(data, scale=1.0, offset=0.0)

	Copies pixel data to this image. This method copies data from a
sequence object into the image, starting at the upper left
corner (0, 0), and continuing until either the image or the
sequence ends. The scale and offset values are used to adjust
the sequence values: pixel = value*scale + offset.

	Parameters:	
	data – A sequence object.

	scale – An optional scale value. The default is 1.0.

	offset – An optional offset value. The default is 0.0.

	
Image.putpalette(data, rawmode='RGB')

	Attaches a palette to this image. The image must be a “P” or
“L” image, and the palette sequence must contain 768 integer
values, where each group of three values represent the red,
green, and blue values for the corresponding pixel
index. Instead of an integer sequence, you can use an 8-bit
string.

	Parameters:	data – A palette sequence (either a list or a string).

	
Image.putpixel(xy, value)

	Modifies the pixel at the given position. The color is given as
a single numerical value for single-band images, and a tuple for
multi-band images.

Note that this method is relatively slow. For more extensive changes,
use paste() or the ImageDraw
module instead.

See:

	paste()

	putdata()

	ImageDraw

	Parameters:	
	xy – The pixel coordinate, given as (x, y).

	value – The pixel value.

	
Image.quantize(colors=256, method=None, kmeans=0, palette=None)

	Convert the image to ‘P’ mode with the specified number
of colors.

	Parameters:	
	colors – The desired number of colors, <= 256

	method – 0 = median cut
1 = maximum coverage
2 = fast octree

	kmeans – Integer

	palette – Quantize to the PIL.ImagingPalette palette.

	Returns:	A new image

	
Image.resize(size, resample=0)

	Returns a resized copy of this image.

	Parameters:	
	size – The requested size in pixels, as a 2-tuple:
(width, height).

	resample – An optional resampling filter. This can be
one of PIL.Image.NEAREST (use nearest neighbour),
PIL.Image.BILINEAR (linear interpolation),
PIL.Image.BICUBIC (cubic spline interpolation), or
PIL.Image.LANCZOS (a high-quality downsampling filter).
If omitted, or if the image has mode “1” or “P”, it is
set PIL.Image.NEAREST.

	Returns:	An Image object.

	
Image.rotate(angle, resample=0, expand=0)

	Returns a rotated copy of this image. This method returns a
copy of this image, rotated the given number of degrees counter
clockwise around its centre.

	Parameters:	
	angle – In degrees counter clockwise.

	resample – An optional resampling filter. This can be
one of PIL.Image.NEAREST (use nearest neighbour),
PIL.Image.BILINEAR (linear interpolation in a 2x2
environment), or PIL.Image.BICUBIC
(cubic spline interpolation in a 4x4 environment).
If omitted, or if the image has mode “1” or “P”, it is
set PIL.Image.NEAREST.

	expand – Optional expansion flag. If true, expands the output
image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the
input image.

	Returns:	An Image object.

	
Image.save(fp, format=None, **params)

	Saves this image under the given filename. If no format is
specified, the format to use is determined from the filename
extension, if possible.

Keyword options can be used to provide additional instructions
to the writer. If a writer doesn’t recognise an option, it is
silently ignored. The available options are described in the
image format documentation for each writer.

You can use a file object instead of a filename. In this case,
you must always specify the format. The file object must
implement the seek, tell, and write
methods, and be opened in binary mode.

	Parameters:	
	fp – File name or file object.

	format – Optional format override. If omitted, the
format to use is determined from the filename extension.
If a file object was used instead of a filename, this
parameter should always be used.

	options – Extra parameters to the image writer.

	Returns:	None

	Raises:	
	KeyError – If the output format could not be determined
from the file name. Use the format option to solve this.

	IOError – If the file could not be written. The file
may have been created, and may contain partial data.

	
Image.seek(frame)

	Seeks to the given frame in this sequence file. If you seek
beyond the end of the sequence, the method raises an
EOFError exception. When a sequence file is opened, the
library automatically seeks to frame 0.

Note that in the current version of the library, most sequence
formats only allows you to seek to the next frame.

See tell().

	Parameters:	frame – Frame number, starting at 0.

	Raises EOFError:

		If the call attempts to seek beyond the end
of the sequence.

	
Image.show(title=None, command=None)

	Displays this image. This method is mainly intended for
debugging purposes.

On Unix platforms, this method saves the image to a temporary
PPM file, and calls the xv utility.

On Windows, it saves the image to a temporary BMP file, and uses
the standard BMP display utility to show it (usually Paint).

	Parameters:	
	title – Optional title to use for the image window,
where possible.

	command – command used to show the image

	
Image.split()

	Split this image into individual bands. This method returns a
tuple of individual image bands from an image. For example,
splitting an “RGB” image creates three new images each
containing a copy of one of the original bands (red, green,
blue).

	Returns:	A tuple containing bands.

	
Image.tell()

	Returns the current frame number. See seek().

	Returns:	Frame number, starting with 0.

	
Image.thumbnail(size, resample=3)

	Make this image into a thumbnail. This method modifies the
image to contain a thumbnail version of itself, no larger than
the given size. This method calculates an appropriate thumbnail
size to preserve the aspect of the image, calls the
draft() method to configure the file reader
(where applicable), and finally resizes the image.

Note that this function modifies the Image
object in place. If you need to use the full resolution image as well,
apply this method to a copy() of the original
image.

	Parameters:	
	size – Requested size.

	resample – Optional resampling filter. This can be one
of PIL.Image.NEAREST, PIL.Image.BILINEAR,
PIL.Image.BICUBIC, or PIL.Image.LANCZOS.
If omitted, it defaults to PIL.Image.BICUBIC.
(was PIL.Image.NEAREST prior to version 2.5.0)

	Returns:	None

	
Image.tobitmap(name='image')

	Returns the image converted to an X11 bitmap.

Note

This method only works for mode “1” images.

	Parameters:	name – The name prefix to use for the bitmap variables.

	Returns:	A string containing an X11 bitmap.

	Raises ValueError:

		If the mode is not “1”

	
Image.tobytes(encoder_name='raw', *args)

	Return image as a bytes object

	Parameters:	
	encoder_name – What encoder to use. The default is to
use the standard “raw” encoder.

	args – Extra arguments to the encoder.

	Return type:	A bytes object.

	
Image.tostring(*args, **kw)

	Deprecated alias to tobytes.

Deprecated since version 2.0.

	
Image.transform(size, method, data=None, resample=0, fill=1)

	Transforms this image. This method creates a new image with the
given size, and the same mode as the original, and copies data
to the new image using the given transform.

	Parameters:	
	size – The output size.

	method – The transformation method. This is one of
PIL.Image.EXTENT (cut out a rectangular subregion),
PIL.Image.AFFINE (affine transform),
PIL.Image.PERSPECTIVE (perspective transform),
PIL.Image.QUAD (map a quadrilateral to a rectangle), or
PIL.Image.MESH (map a number of source quadrilaterals
in one operation).

	data – Extra data to the transformation method.

	resample – Optional resampling filter. It can be one of
PIL.Image.NEAREST (use nearest neighbour),
PIL.Image.BILINEAR (linear interpolation in a 2x2
environment), or PIL.Image.BICUBIC (cubic spline
interpolation in a 4x4 environment). If omitted, or if the image
has mode “1” or “P”, it is set to PIL.Image.NEAREST.

	Returns:	An Image object.

	
Image.transpose(method)

	Transpose image (flip or rotate in 90 degree steps)

	Parameters:	method – One of PIL.Image.FLIP_LEFT_RIGHT,
PIL.Image.FLIP_TOP_BOTTOM, PIL.Image.ROTATE_90,
PIL.Image.ROTATE_180, PIL.Image.ROTATE_270 or
PIL.Image.TRANSPOSE.

	Returns:	Returns a flipped or rotated copy of this image.

	
Image.verify()

	Verifies the contents of a file. For data read from a file, this
method attempts to determine if the file is broken, without
actually decoding the image data. If this method finds any
problems, it raises suitable exceptions. If you need to load
the image after using this method, you must reopen the image
file.

	
Image.fromstring(*args, **kw)

	Deprecated alias to frombytes.

Deprecated since version 2.0.

	
Image.load()

	Allocates storage for the image and loads the pixel data. In
normal cases, you don’t need to call this method, since the
Image class automatically loads an opened image when it is
accessed for the first time. This method will close the file
associated with the image.

	Returns:	An image access object.

	Return type:	PixelAccess Class or PIL.PyAccess

	
Image.close()

	Closes the file pointer, if possible.

This operation will destroy the image core and release its memory.
The image data will be unusable afterward.

This function is only required to close images that have not
had their file read and closed by the
load() method.

Attributes

Instances of the Image class have the following attributes:

	
PIL.Image.format

	The file format of the source file. For images created by the library
itself (via a factory function, or by running a method on an existing
image), this attribute is set to None.

	Type:	string or None

	
PIL.Image.mode

	Image mode. This is a string specifying the pixel format used by the image.
Typical values are “1”, “L”, “RGB”, or “CMYK.” See
Modes for a full list.

	Type:	string

	
PIL.Image.size

	Image size, in pixels. The size is given as a 2-tuple (width, height).

	Type:	(width, height)

	
PIL.Image.palette

	Colour palette table, if any. If mode is “P”, this should be an instance of
the ImagePalette class. Otherwise, it should
be set to None.

	Type:	ImagePalette or None

	
PIL.Image.info

	A dictionary holding data associated with the image. This dictionary is
used by file handlers to pass on various non-image information read from
the file. See documentation for the various file handlers for details.

Most methods ignore the dictionary when returning new images; since the
keys are not standardized, it’s not possible for a method to know if the
operation affects the dictionary. If you need the information later on,
keep a reference to the info dictionary returned from the open method.

Unless noted elsewhere, this dictionary does not affect saving files.

	Type:	dict [http://docs.python.org/2/library/stdtypes.html#dict]

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageChops (“Channel Operations”) Module

The ImageChops module contains a number of arithmetical image
operations, called channel operations (“chops”). These can be used for various
purposes, including special effects, image compositions, algorithmic painting,
and more.

For more pre-made operations, see ImageOps.

At this time, most channel operations are only implemented for 8-bit images
(e.g. “L” and “RGB”).

Functions

Most channel operations take one or two image arguments and returns a new
image. Unless otherwise noted, the result of a channel operation is always
clipped to the range 0 to MAX (which is 255 for all modes supported by the
operations in this module).

	
PIL.ImageChops.add(image1, image2, scale=1.0, offset=0)

	Adds two images, dividing the result by scale and adding the
offset. If omitted, scale defaults to 1.0, and offset to 0.0.

out = ((image1 + image2) / scale + offset)

	Return type:	Image

	
PIL.ImageChops.add_modulo(image1, image2)

	Add two images, without clipping the result.

out = ((image1 + image2) % MAX)

	Return type:	Image

	
PIL.ImageChops.blend(image1, image2, alpha)

	Blend images using constant transparency weight. Alias for
PIL.Image.Image.blend().

	Return type:	Image

	
PIL.ImageChops.composite(image1, image2, mask)

	Create composite using transparency mask. Alias for
PIL.Image.Image.composite().

	Return type:	Image

	
PIL.ImageChops.constant(image, value)

	Fill a channel with a given grey level.

	Return type:	Image

	
PIL.ImageChops.darker(image1, image2)

	Compares the two images, pixel by pixel, and returns a new image
containing the darker values.

out = min(image1, image2)

	Return type:	Image

	
PIL.ImageChops.difference(image1, image2)

	Returns the absolute value of the pixel-by-pixel difference between the two
images.

out = abs(image1 - image2)

	Return type:	Image

	
PIL.ImageChops.duplicate(image)

	Copy a channel. Alias for PIL.Image.Image.copy().

	Return type:	Image

	
PIL.ImageChops.invert(image)

	Invert an image (channel).

out = MAX - image

	Return type:	Image

	
PIL.ImageChops.lighter(image1, image2)

	Compares the two images, pixel by pixel, and returns a new image containing
the lighter values.

out = max(image1, image2)

	Return type:	Image

	
PIL.ImageChops.logical_and(image1, image2)

	Logical AND between two images.

out = ((image1 and image2) % MAX)

	Return type:	Image

	
PIL.ImageChops.logical_or(image1, image2)

	Logical OR between two images.

out = ((image1 or image2) % MAX)

	Return type:	Image

	
PIL.ImageChops.multiply(image1, image2)

	Superimposes two images on top of each other.

If you multiply an image with a solid black image, the result is black. If
you multiply with a solid white image, the image is unaffected.

out = image1 * image2 / MAX

	Return type:	Image

	
PIL.ImageChops.offset(image, xoffset, yoffset=None)

	Returns a copy of the image where data has been offset by the given
distances. Data wraps around the edges. If yoffset is omitted, it
is assumed to be equal to xoffset.

	Parameters:	
	xoffset – The horizontal distance.

	yoffset – The vertical distance. If omitted, both
distances are set to the same value.

	Return type:	Image

	
PIL.ImageChops.screen(image1, image2)

	Superimposes two inverted images on top of each other.

out = MAX - ((MAX - image1) * (MAX - image2) / MAX)

	Return type:	Image

	
PIL.ImageChops.subtract(image1, image2, scale=1.0, offset=0)

	Subtracts two images, dividing the result by scale and adding the
offset. If omitted, scale defaults to 1.0, and offset to 0.0.

out = ((image1 - image2) / scale + offset)

	Return type:	Image

	
PIL.ImageChops.subtract_modulo(image1, image2)

	Subtract two images, without clipping the result.

out = ((image1 - image2) % MAX)

	Return type:	Image

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageColor Module

The ImageColor module contains color tables and converters from
CSS3-style color specifiers to RGB tuples. This module is used by
PIL.Image.Image.new() and the ImageDraw module, among
others.

Color Names

The ImageColor module supports the following string formats:

	Hexadecimal color specifiers, given as #rgb or #rrggbb. For example,
#ff0000 specifies pure red.

	RGB functions, given as rgb(red, green, blue) where the color values are
integers in the range 0 to 255. Alternatively, the color values can be given
as three percentages (0% to 100%). For example, rgb(255,0,0) and
rgb(100%,0%,0%) both specify pure red.

	Hue-Saturation-Lightness (HSL) functions, given as hsl(hue, saturation%,
lightness%) where hue is the color given as an angle between 0 and 360
(red=0, green=120, blue=240), saturation is a value between 0% and 100%
(gray=0%, full color=100%), and lightness is a value between 0% and 100%
(black=0%, normal=50%, white=100%). For example, hsl(0,100%,50%) is pure
red.

	Common HTML color names. The ImageColor module provides some
140 standard color names, based on the colors supported by the X Window
system and most web browsers. color names are case insensitive. For example,
red and Red both specify pure red.

Functions

	
PIL.ImageColor.getrgb(color)

	
Convert a color string to an RGB tuple. If the string cannot be parsed,
this function raises a ValueError exception.

New in version 1.1.4.

	Parameters:	color – A color string

	Returns:	(red, green, blue[, alpha])

	
PIL.ImageColor.getcolor(color, mode)

	Same as getrgb(), but converts the RGB value to a
greyscale value if the mode is not color or a palette image. If the string
cannot be parsed, this function raises a ValueError exception.

New in version 1.1.4.

	Parameters:	color – A color string

	Returns:	(graylevel [, alpha]) or (red, green, blue[, alpha])

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageCms Module

The ImageCms module provides color profile management
support using the LittleCMS2 color management engine, based on Kevin
Cazabon’s PyCMS library.

	
exception PIL.ImageCms.PyCMSError

	(pyCMS) Exception class.
This is used for all errors in the pyCMS API.

	
PIL.ImageCms.applyTransform(im, transform, inPlace=0)

	(pyCMS) Applies a transform to a given image.

If im.mode != transform.inMode, a PyCMSError is raised.

If inPlace == TRUE and transform.inMode != transform.outMode, a
PyCMSError is raised.

If im.mode, transfer.inMode, or transfer.outMode is not supported by
pyCMSdll or the profiles you used for the transform, a PyCMSError is
raised.

If an error occurs while the transform is being applied, a PyCMSError
is raised.

This function applies a pre-calculated transform (from
ImageCms.buildTransform() or ImageCms.buildTransformFromOpenProfiles())
to an image. The transform can be used for multiple images, saving
considerable calcuation time if doing the same conversion multiple times.

If you want to modify im in-place instead of receiving a new image as
the return value, set inPlace to TRUE. This can only be done if
transform.inMode and transform.outMode are the same, because we can’t
change the mode in-place (the buffer sizes for some modes are
different). The default behavior is to return a new Image object of
the same dimensions in mode transform.outMode.

	Parameters:	
	im – A PIL Image object, and im.mode must be the same as the inMode
supported by the transform.

	transform – A valid CmsTransform class object

	inPlace – Bool (1 == True, 0 or None == False). If True, im is
modified in place and None is returned, if False, a new Image object
with the transform applied is returned (and im is not changed). The
default is False.

	Returns:	Either None, or a new PIL Image object, depending on the value of
inPlace. The profile will be returned in the image’s info[‘icc_profile’].

	Raises PyCMSError:

		

	
PIL.ImageCms.buildProofTransform(inputProfile, outputProfile, proofProfile, inMode, outMode, renderingIntent=0, proofRenderingIntent=3, flags=16384)

	(pyCMS) Builds an ICC transform mapping from the inputProfile to the
outputProfile, but tries to simulate the result that would be
obtained on the proofProfile device.

If the input, output, or proof profiles specified are not valid
filenames, a PyCMSError will be raised.

If an error occurs during creation of the transform, a PyCMSError will
be raised.

If inMode or outMode are not a mode supported by the outputProfile
(or by pyCMS), a PyCMSError will be raised.

This function builds and returns an ICC transform from the inputProfile
to the outputProfile, but tries to simulate the result that would be
obtained on the proofProfile device using renderingIntent and
proofRenderingIntent to determine what to do with out-of-gamut
colors. This is known as “soft-proofing”. It will ONLY work for
converting images that are in inMode to images that are in outMode
color format (PIL mode, i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Usage of the resulting transform object is exactly the same as with
ImageCms.buildTransform().

Proof profiling is generally used when using an output device to get a
good idea of what the final printed/displayed image would look like on
the proofProfile device when it’s quicker and easier to use the
output device for judging color. Generally, this means that the
output device is a monitor, or a dye-sub printer (etc.), and the simulated
device is something more expensive, complicated, or time consuming
(making it difficult to make a real print for color judgement purposes).

Soft-proofing basically functions by adjusting the colors on the
output device to match the colors of the device being simulated. However,
when the simulated device has a much wider gamut than the output
device, you may obtain marginal results.

	Parameters:	
	inputProfile – String, as a valid filename path to the ICC input
profile you wish to use for this transform, or a profile object

	outputProfile – String, as a valid filename path to the ICC output
(monitor, usually) profile you wish to use for this transform, or a
profile object

	proofProfile – String, as a valid filename path to the ICC proof
profile you wish to use for this transform, or a profile object

	inMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	outMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	renderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for the input->proof (simulated) transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	proofRenderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for proof->output transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	flags – Integer (0-...) specifying additional flags

	Returns:	A CmsTransform class object.

	Raises PyCMSError:

		

	
PIL.ImageCms.buildProofTransformFromOpenProfiles(inputProfile, outputProfile, proofProfile, inMode, outMode, renderingIntent=0, proofRenderingIntent=3, flags=16384)

	(pyCMS) Builds an ICC transform mapping from the inputProfile to the
outputProfile, but tries to simulate the result that would be
obtained on the proofProfile device.

If the input, output, or proof profiles specified are not valid
filenames, a PyCMSError will be raised.

If an error occurs during creation of the transform, a PyCMSError will
be raised.

If inMode or outMode are not a mode supported by the outputProfile
(or by pyCMS), a PyCMSError will be raised.

This function builds and returns an ICC transform from the inputProfile
to the outputProfile, but tries to simulate the result that would be
obtained on the proofProfile device using renderingIntent and
proofRenderingIntent to determine what to do with out-of-gamut
colors. This is known as “soft-proofing”. It will ONLY work for
converting images that are in inMode to images that are in outMode
color format (PIL mode, i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Usage of the resulting transform object is exactly the same as with
ImageCms.buildTransform().

Proof profiling is generally used when using an output device to get a
good idea of what the final printed/displayed image would look like on
the proofProfile device when it’s quicker and easier to use the
output device for judging color. Generally, this means that the
output device is a monitor, or a dye-sub printer (etc.), and the simulated
device is something more expensive, complicated, or time consuming
(making it difficult to make a real print for color judgement purposes).

Soft-proofing basically functions by adjusting the colors on the
output device to match the colors of the device being simulated. However,
when the simulated device has a much wider gamut than the output
device, you may obtain marginal results.

	Parameters:	
	inputProfile – String, as a valid filename path to the ICC input
profile you wish to use for this transform, or a profile object

	outputProfile – String, as a valid filename path to the ICC output
(monitor, usually) profile you wish to use for this transform, or a
profile object

	proofProfile – String, as a valid filename path to the ICC proof
profile you wish to use for this transform, or a profile object

	inMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	outMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	renderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for the input->proof (simulated) transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	proofRenderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for proof->output transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	flags – Integer (0-...) specifying additional flags

	Returns:	A CmsTransform class object.

	Raises PyCMSError:

		

	
PIL.ImageCms.buildTransform(inputProfile, outputProfile, inMode, outMode, renderingIntent=0, flags=0)

	(pyCMS) Builds an ICC transform mapping from the inputProfile to the
outputProfile. Use applyTransform to apply the transform to a given
image.

If the input or output profiles specified are not valid filenames, a
PyCMSError will be raised. If an error occurs during creation of the
transform, a PyCMSError will be raised.

If inMode or outMode are not a mode supported by the outputProfile (or
by pyCMS), a PyCMSError will be raised.

This function builds and returns an ICC transform from the inputProfile
to the outputProfile using the renderingIntent to determine what to do
with out-of-gamut colors. It will ONLY work for converting images that
are in inMode to images that are in outMode color format (PIL mode,
i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Building the transform is a fair part of the overhead in
ImageCms.profileToProfile(), so if you’re planning on converting multiple
images using the same input/output settings, this can save you time.
Once you have a transform object, it can be used with
ImageCms.applyProfile() to convert images without the need to re-compute
the lookup table for the transform.

The reason pyCMS returns a class object rather than a handle directly
to the transform is that it needs to keep track of the PIL input/output
modes that the transform is meant for. These attributes are stored in
the “inMode” and “outMode” attributes of the object (which can be
manually overridden if you really want to, but I don’t know of any
time that would be of use, or would even work).

	Parameters:	
	inputProfile – String, as a valid filename path to the ICC input
profile you wish to use for this transform, or a profile object

	outputProfile – String, as a valid filename path to the ICC output
profile you wish to use for this transform, or a profile object

	inMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	outMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	renderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for the transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	flags – Integer (0-...) specifying additional flags

	Returns:	A CmsTransform class object.

	Raises PyCMSError:

		

	
PIL.ImageCms.buildTransformFromOpenProfiles(inputProfile, outputProfile, inMode, outMode, renderingIntent=0, flags=0)

	(pyCMS) Builds an ICC transform mapping from the inputProfile to the
outputProfile. Use applyTransform to apply the transform to a given
image.

If the input or output profiles specified are not valid filenames, a
PyCMSError will be raised. If an error occurs during creation of the
transform, a PyCMSError will be raised.

If inMode or outMode are not a mode supported by the outputProfile (or
by pyCMS), a PyCMSError will be raised.

This function builds and returns an ICC transform from the inputProfile
to the outputProfile using the renderingIntent to determine what to do
with out-of-gamut colors. It will ONLY work for converting images that
are in inMode to images that are in outMode color format (PIL mode,
i.e. “RGB”, “RGBA”, “CMYK”, etc.).

Building the transform is a fair part of the overhead in
ImageCms.profileToProfile(), so if you’re planning on converting multiple
images using the same input/output settings, this can save you time.
Once you have a transform object, it can be used with
ImageCms.applyProfile() to convert images without the need to re-compute
the lookup table for the transform.

The reason pyCMS returns a class object rather than a handle directly
to the transform is that it needs to keep track of the PIL input/output
modes that the transform is meant for. These attributes are stored in
the “inMode” and “outMode” attributes of the object (which can be
manually overridden if you really want to, but I don’t know of any
time that would be of use, or would even work).

	Parameters:	
	inputProfile – String, as a valid filename path to the ICC input
profile you wish to use for this transform, or a profile object

	outputProfile – String, as a valid filename path to the ICC output
profile you wish to use for this transform, or a profile object

	inMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	outMode – String, as a valid PIL mode that the appropriate profile
also supports (i.e. “RGB”, “RGBA”, “CMYK”, etc.)

	renderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for the transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	flags – Integer (0-...) specifying additional flags

	Returns:	A CmsTransform class object.

	Raises PyCMSError:

		

	
PIL.ImageCms.createProfile(colorSpace, colorTemp=-1)

	(pyCMS) Creates a profile.

If colorSpace not in [“LAB”, “XYZ”, “sRGB”], a PyCMSError is raised

If using LAB and colorTemp != a positive integer, a PyCMSError is raised.

If an error occurs while creating the profile, a PyCMSError is raised.

Use this function to create common profiles on-the-fly instead of
having to supply a profile on disk and knowing the path to it. It
returns a normal CmsProfile object that can be passed to
ImageCms.buildTransformFromOpenProfiles() to create a transform to apply
to images.

	Parameters:	
	colorSpace – String, the color space of the profile you wish to
create.
Currently only “LAB”, “XYZ”, and “sRGB” are supported.

	colorTemp – Positive integer for the white point for the profile, in
degrees Kelvin (i.e. 5000, 6500, 9600, etc.). The default is for D50
illuminant if omitted (5000k). colorTemp is ONLY applied to LAB
profiles, and is ignored for XYZ and sRGB.

	Returns:	A CmsProfile class object

	Raises PyCMSError:

		

	
PIL.ImageCms.getDefaultIntent(profile)

	(pyCMS) Gets the default intent name for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised.

If an error occurs while trying to obtain the default intent, a
PyCMSError is raised.

Use this function to determine the default (and usually best optomized)
rendering intent for this profile. Most profiles support multiple
rendering intents, but are intended mostly for one type of conversion.
If you wish to use a different intent than returned, use
ImageCms.isIntentSupported() to verify it will work first.

	Parameters:	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns:	Integer 0-3 specifying the default rendering intent for this
profile.
INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

	see the pyCMS documentation for details on rendering intents and what

	they do.

	Raises PyCMSError:

		

	
PIL.ImageCms.getOpenProfile(profileFilename)

	(pyCMS) Opens an ICC profile file.

The PyCMSProfile object can be passed back into pyCMS for use in creating
transforms and such (as in ImageCms.buildTransformFromOpenProfiles()).

If profileFilename is not a vaild filename for an ICC profile, a PyCMSError
will be raised.

	Parameters:	profileFilename – String, as a valid filename path to the ICC profile
you wish to open, or a file-like object.

	Returns:	A CmsProfile class object.

	Raises PyCMSError:

		

	
PIL.ImageCms.getProfileCopyright(profile)

	(pyCMS) Gets the copyright for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised.

If an error occurs while trying to obtain the copyright tag, a PyCMSError
is raised

Use this function to obtain the information stored in the profile’s
copyright tag.

	Parameters:	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns:	A string containing the internal profile information stored in
an ICC tag.

	Raises PyCMSError:

		

	
PIL.ImageCms.getProfileDescription(profile)

	(pyCMS) Gets the description for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised.

If an error occurs while trying to obtain the description tag, a PyCMSError
is raised

Use this function to obtain the information stored in the profile’s
description tag.

	Parameters:	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns:	A string containing the internal profile information stored in an
ICC tag.

	Raises PyCMSError:

		

	
PIL.ImageCms.getProfileInfo(profile)

	(pyCMS) Gets the internal product information for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised.

If an error occurs while trying to obtain the info tag, a PyCMSError
is raised

Use this function to obtain the information stored in the profile’s
info tag. This often contains details about the profile, and how it
was created, as supplied by the creator.

	Parameters:	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns:	A string containing the internal profile information stored in
an ICC tag.

	Raises PyCMSError:

		

	
PIL.ImageCms.getProfileManufacturer(profile)

	(pyCMS) Gets the manufacturer for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised.

If an error occurs while trying to obtain the manufacturer tag, a
PyCMSError is raised

Use this function to obtain the information stored in the profile’s
manufacturer tag.

	Parameters:	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns:	A string containing the internal profile information stored in
an ICC tag.

	Raises PyCMSError:

		

	
PIL.ImageCms.getProfileModel(profile)

	(pyCMS) Gets the model for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised.

If an error occurs while trying to obtain the model tag, a PyCMSError
is raised

Use this function to obtain the information stored in the profile’s
model tag.

	Parameters:	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns:	A string containing the internal profile information stored in
an ICC tag.

	Raises PyCMSError:

		

	
PIL.ImageCms.getProfileName(profile)

	(pyCMS) Gets the internal product name for the given profile.

If profile isn’t a valid CmsProfile object or filename to a profile,
a PyCMSError is raised If an error occurs while trying to obtain the
name tag, a PyCMSError is raised.

Use this function to obtain the INTERNAL name of the profile (stored
in an ICC tag in the profile itself), usually the one used when the
profile was originally created. Sometimes this tag also contains
additional information supplied by the creator.

	Parameters:	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	Returns:	A string containing the internal name of the profile as stored
in an ICC tag.

	Raises PyCMSError:

		

	
PIL.ImageCms.get_display_profile(handle=None)

	(experimental) Fetches the profile for the current display device.
:returns: None if the profile is not known.

	
PIL.ImageCms.isIntentSupported(profile, intent, direction)

	(pyCMS) Checks if a given intent is supported.

Use this function to verify that you can use your desired
renderingIntent with profile, and that profile can be used for the
input/output/proof profile as you desire.

Some profiles are created specifically for one “direction”, can cannot
be used for others. Some profiles can only be used for certain
rendering intents... so it’s best to either verify this before trying
to create a transform with them (using this function), or catch the
potential PyCMSError that will occur if they don’t support the modes
you select.

	Parameters:	
	profile – EITHER a valid CmsProfile object, OR a string of the
filename of an ICC profile.

	intent – Integer (0-3) specifying the rendering intent you wish to
use with this profile

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

	see the pyCMS documentation for details on rendering intents and what

	they do.

	direction – Integer specifing if the profile is to be used for input,
output, or proof

INPUT = 0 (or use ImageCms.DIRECTION_INPUT)
OUTPUT = 1 (or use ImageCms.DIRECTION_OUTPUT)
PROOF = 2 (or use ImageCms.DIRECTION_PROOF)

	Returns:	1 if the intent/direction are supported, -1 if they are not.

	Raises PyCMSError:

		

	
PIL.ImageCms.profileToProfile(im, inputProfile, outputProfile, renderingIntent=0, outputMode=None, inPlace=0, flags=0)

	(pyCMS) Applies an ICC transformation to a given image, mapping from
inputProfile to outputProfile.

If the input or output profiles specified are not valid filenames, a
PyCMSError will be raised. If inPlace == TRUE and outputMode != im.mode,
a PyCMSError will be raised. If an error occurs during application of
the profiles, a PyCMSError will be raised. If outputMode is not a mode
supported by the outputProfile (or by pyCMS), a PyCMSError will be
raised.

This function applies an ICC transformation to im from inputProfile’s
color space to outputProfile’s color space using the specified rendering
intent to decide how to handle out-of-gamut colors.

OutputMode can be used to specify that a color mode conversion is to
be done using these profiles, but the specified profiles must be able
to handle that mode. I.e., if converting im from RGB to CMYK using
profiles, the input profile must handle RGB data, and the output
profile must handle CMYK data.

	Parameters:	
	im – An open PIL image object (i.e. Image.new(...) or
Image.open(...), etc.)

	inputProfile – String, as a valid filename path to the ICC input
profile you wish to use for this image, or a profile object

	outputProfile – String, as a valid filename path to the ICC output
profile you wish to use for this image, or a profile object

	renderingIntent – Integer (0-3) specifying the rendering intent you
wish to use for the transform

INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL)
INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC)
INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION)
INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC)

see the pyCMS documentation for details on rendering intents and what
they do.

	outputMode – A valid PIL mode for the output image (i.e. “RGB”,
“CMYK”, etc.). Note: if rendering the image “inPlace”, outputMode
MUST be the same mode as the input, or omitted completely. If
omitted, the outputMode will be the same as the mode of the input
image (im.mode)

	inPlace – Boolean (1 = True, None or 0 = False). If True, the
original image is modified in-place, and None is returned. If False
(default), a new Image object is returned with the transform applied.

	flags – Integer (0-...) specifying additional flags

	Returns:	Either None or a new PIL image object, depending on value of
inPlace

	Raises PyCMSError:

		

	
PIL.ImageCms.versions()

	(pyCMS) Fetches versions.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageDraw Module

The ImageDraw module provide simple 2D graphics for
Image objects. You can use this module to create new
images, annotate or retouch existing images, and to generate graphics on the
fly for web use.

For a more advanced drawing library for PIL, see the aggdraw module [http://effbot.org/zone/aggdraw-index.htm].

Example: Draw a gray cross over an image

from PIL import Image, ImageDraw

im = Image.open("lena.pgm")

draw = ImageDraw.Draw(im)
draw.line((0, 0) + im.size, fill=128)
draw.line((0, im.size[1], im.size[0], 0), fill=128)
del draw

write to stdout
im.save(sys.stdout, "PNG")

Concepts

Coordinates

The graphics interface uses the same coordinate system as PIL itself, with (0,
0) in the upper left corner.

Colors

To specify colors, you can use numbers or tuples just as you would use with
PIL.Image.Image.new() or PIL.Image.Image.putpixel(). For “1”,
“L”, and “I” images, use integers. For “RGB” images, use a 3-tuple containing
integer values. For “F” images, use integer or floating point values.

For palette images (mode “P”), use integers as color indexes. In 1.1.4 and
later, you can also use RGB 3-tuples or color names (see below). The drawing
layer will automatically assign color indexes, as long as you don’t draw with
more than 256 colors.

Color Names

See Color Names for the color names supported by Pillow.

Fonts

PIL can use bitmap fonts or OpenType/TrueType fonts.

Bitmap fonts are stored in PIL’s own format, where each font typically consists
of a two files, one named .pil and the other usually named .pbm. The former
contains font metrics, the latter raster data.

To load a bitmap font, use the load functions in the ImageFont
module.

To load a OpenType/TrueType font, use the truetype function in the
ImageFont module. Note that this function depends on third-party
libraries, and may not available in all PIL builds.

Example: Draw Partial Opacity Text

from PIL import Image, ImageDraw, ImageFont
get an image
base = Image.open('Pillow/Tests/images/lena.png').convert('RGBA')

make a blank image for the text, initialized to transparent text color
txt = Image.new('RGBA', base.size, (255,255,255,0))

get a font
fnt = ImageFont.truetype('Pillow/Tests/fonts/FreeMono.ttf', 40)
get a drawing context
d = ImageDraw.Draw(txt)

draw text, half opacity
d.text((10,10), "Hello", font=fnt, fill=(255,255,255,128))
draw text, full opacity
d.text((10,60), "World", font=fnt, fill=(255,255,255,255))

out = Image.alpha_composite(base, txt)

out.show()

Functions

	
class PIL.ImageDraw.Draw(im, mode=None)

	Creates an object that can be used to draw in the given image.

Note that the image will be modified in place.

	Parameters:	
	im – The image to draw in.

	mode – Optional mode to use for color values. For RGB
images, this argument can be RGB or RGBA (to blend the
drawing into the image). For all other modes, this argument
must be the same as the image mode. If omitted, the mode
defaults to the mode of the image.

Methods

	
PIL.ImageDraw.Draw.arc(xy, start, end, fill=None)

	Draws an arc (a portion of a circle outline) between the start and end
angles, inside the given bounding box.

	Parameters:	
	xy – Four points to define the bounding box. Sequence of
[(x0, y0), (x1, y1)] or [x0, y0, x1, y1].

	start – Starting angle, in degrees. Angles are measured from
3 o’clock, increasing clockwise.

	end – Ending angle, in degrees.

	fill – Color to use for the arc.

	
PIL.ImageDraw.Draw.bitmap(xy, bitmap, fill=None)

	Draws a bitmap (mask) at the given position, using the current fill color
for the non-zero portions. The bitmap should be a valid transparency mask
(mode “1”) or matte (mode “L” or “RGBA”).

This is equivalent to doing image.paste(xy, color, bitmap).

To paste pixel data into an image, use the
paste() method on the image itself.

	
PIL.ImageDraw.Draw.chord(xy, start, end, fill=None, outline=None)

	Same as arc(), but connects the end points
with a straight line.

	Parameters:	
	xy – Four points to define the bounding box. Sequence of
[(x0, y0), (x1, y1)] or [x0, y0, x1, y1].

	outline – Color to use for the outline.

	fill – Color to use for the fill.

	
PIL.ImageDraw.Draw.ellipse(xy, fill=None, outline=None)

	Draws an ellipse inside the given bounding box.

	Parameters:	
	xy – Four points to define the bounding box. Sequence of either
[(x0, y0), (x1, y1)] or [x0, y0, x1, y1].

	outline – Color to use for the outline.

	fill – Color to use for the fill.

	
PIL.ImageDraw.Draw.line(xy, fill=None, width=0)

	Draws a line between the coordinates in the xy list.

	Parameters:	
	xy – Sequence of either 2-tuples like [(x, y), (x, y), ...] or
numeric values like [x, y, x, y, ...].

	fill – Color to use for the line.

	width – The line width, in pixels. Note that line
joins are not handled well, so wide polylines will not look good.

New in version 1.1.5.

Note

This option was broken until version 1.1.6.

	
PIL.ImageDraw.Draw.pieslice(xy, start, end, fill=None, outline=None)

	Same as arc, but also draws straight lines between the end points and the
center of the bounding box.

	Parameters:	
	xy – Four points to define the bounding box. Sequence of
[(x0, y0), (x1, y1)] or [x0, y0, x1, y1].

	outline – Color to use for the outline.

	fill – Color to use for the fill.

	
PIL.ImageDraw.Draw.point(xy, fill=None)

	Draws points (individual pixels) at the given coordinates.

	Parameters:	
	xy – Sequence of either 2-tuples like [(x, y), (x, y), ...] or
numeric values like [x, y, x, y, ...].

	fill – Color to use for the point.

	
PIL.ImageDraw.Draw.polygon(xy, fill=None, outline=None)

	Draws a polygon.

The polygon outline consists of straight lines between the given
coordinates, plus a straight line between the last and the first
coordinate.

	Parameters:	
	xy – Sequence of either 2-tuples like [(x, y), (x, y), ...] or
numeric values like [x, y, x, y, ...].

	outline – Color to use for the outline.

	fill – Color to use for the fill.

	
PIL.ImageDraw.Draw.rectangle(xy, fill=None, outline=None)

	Draws a rectangle.

	Parameters:	
	xy – Four points to define the bounding box. Sequence of either
[(x0, y0), (x1, y1)] or [x0, y0, x1, y1]. The second point
is just outside the drawn rectangle.

	outline – Color to use for the outline.

	fill – Color to use for the fill.

	
PIL.ImageDraw.Draw.shape(shape, fill=None, outline=None)

	
Warning

This method is experimental.

Draw a shape.

	
PIL.ImageDraw.Draw.text(xy, text, fill=None, font=None, anchor=None)

	Draws the string at the given position.

	Parameters:	
	xy – Top left corner of the text.

	text – Text to be drawn.

	font – An ImageFont instance.

	fill – Color to use for the text.

	
PIL.ImageDraw.Draw.textsize(text, font=None)

	Return the size of the given string, in pixels.

	Parameters:	
	text – Text to be measured.

	font – An ImageFont instance.

Legacy API

The Draw class contains a constructor and a number
of methods which are provided for backwards compatibility only. For this to
work properly, you should either use options on the drawing primitives, or
these methods. Do not mix the old and new calling conventions.

	
PIL.ImageDraw.ImageDraw(image)

	

	Return type:	Draw

	
PIL.ImageDraw.Draw.setink(ink)

	
Deprecated since version 1.1.5.

Sets the color to use for subsequent draw and fill operations.

	
PIL.ImageDraw.Draw.setfill(fill)

	
Deprecated since version 1.1.5.

Sets the fill mode.

If the mode is 0, subsequently drawn shapes (like polygons and rectangles)
are outlined. If the mode is 1, they are filled.

	
PIL.ImageDraw.Draw.setfont(font)

	
Deprecated since version 1.1.5.

Sets the default font to use for the text method.

	Parameters:	font – An ImageFont instance.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageEnhance Module

The ImageEnhance module contains a number of classes that can be used
for image enhancement.

Example: Vary the sharpness of an image

from PIL import ImageEnhance

enhancer = ImageEnhance.Sharpness(image)

for i in range(8):
 factor = i / 4.0
 enhancer.enhance(factor).show("Sharpness %f" % factor)

Also see the enhancer.py demo program in the Scripts/
directory.

Classes

All enhancement classes implement a common interface, containing a single
method:

	
class PIL.ImageEnhance._Enhance

	
	
enhance(factor)

	Returns an enhanced image.

	Parameters:	factor – A floating point value controlling the enhancement.
Factor 1.0 always returns a copy of the original image,
lower factors mean less color (brightness, contrast,
etc), and higher values more. There are no restrictions
on this value.

	Return type:	Image

	
class PIL.ImageEnhance.Color(image)

	Adjust image color balance.

This class can be used to adjust the colour balance of an image, in
a manner similar to the controls on a colour TV set. An enhancement
factor of 0.0 gives a black and white image. A factor of 1.0 gives
the original image.

	
class PIL.ImageEnhance.Contrast(image)

	Adjust image contrast.

This class can be used to control the contrast of an image, similar
to the contrast control on a TV set. An enhancement factor of 0.0
gives a solid grey image. A factor of 1.0 gives the original image.

	
class PIL.ImageEnhance.Brightness(image)

	Adjust image brightness.

This class can be used to control the brighntess of an image. An
enhancement factor of 0.0 gives a black image. A factor of 1.0 gives the
original image.

	
class PIL.ImageEnhance.Sharpness(image)

	Adjust image sharpness.

This class can be used to adjust the sharpness of an image. An
enhancement factor of 0.0 gives a blurred image, a factor of 1.0 gives the
original image, and a factor of 2.0 gives a sharpened image.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageFile Module

The ImageFile module provides support functions for the image open
and save functions.

In addition, it provides a Parser class which can be used to decode
an image piece by piece (e.g. while receiving it over a network connection).
This class implements the same consumer interface as the standard sgmllib
and xmllib modules.

Example: Parse an image

from PIL import ImageFile

fp = open("lena.pgm", "rb")

p = ImageFile.Parser()

while 1:
 s = fp.read(1024)
 if not s:
 break
 p.feed(s)

im = p.close()

im.save("copy.jpg")

Parser

	
class PIL.ImageFile.Parser

	Incremental image parser. This class implements the standard
feed/close consumer interface.

In Python 2.x, this is an old-style class.

	
close()

	(Consumer) Close the stream.

	Returns:	An image object.

	Raises IOError:	If the parser failed to parse the image file either
because it cannot be identified or cannot be
decoded.

	
feed(data)

	(Consumer) Feed data to the parser.

	Parameters:	data – A string buffer.

	Raises IOError:	If the parser failed to parse the image file.

	
reset()

	(Consumer) Reset the parser. Note that you can only call this
method immediately after you’ve created a parser; parser
instances cannot be reused.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageFilter Module

The ImageFilter module contains definitions for a pre-defined set of
filters, which can be be used with the Image.filter() method.

Example: Filter an image

from PIL import ImageFilter

im1 = im.filter(ImageFilter.BLUR)

im2 = im.filter(ImageFilter.MinFilter(3))
im3 = im.filter(ImageFilter.MinFilter) # same as MinFilter(3)

Filters

The current version of the library provides the following set of predefined
image enhancement filters:

	BLUR

	CONTOUR

	DETAIL

	EDGE_ENHANCE

	EDGE_ENHANCE_MORE

	EMBOSS

	FIND_EDGES

	SMOOTH

	SMOOTH_MORE

	SHARPEN

	
class PIL.ImageFilter.GaussianBlur(radius=2)

	Gaussian blur filter.

	Parameters:	radius – Blur radius.

	
class PIL.ImageFilter.UnsharpMask(radius=2, percent=150, threshold=3)

	Unsharp mask filter.

See Wikipedia’s entry on digital unsharp masking [https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking] for an explanation of
the parameters.

	Parameters:	
	radius – Blur Radius

	percent – Unsharp strength, in percent

	threshold – Threshold controls the minimum brightness change that
will be sharpened

	
class PIL.ImageFilter.Kernel(size, kernel, scale=None, offset=0)

	Create a convolution kernel. The current version only
supports 3x3 and 5x5 integer and floating point kernels.

In the current version, kernels can only be applied to
“L” and “RGB” images.

	Parameters:	
	size – Kernel size, given as (width, height). In the current
version, this must be (3,3) or (5,5).

	kernel – A sequence containing kernel weights.

	scale – Scale factor. If given, the result for each pixel is
divided by this value. the default is the sum of the
kernel weights.

	offset – Offset. If given, this value is added to the result,
after it has been divided by the scale factor.

	
class PIL.ImageFilter.RankFilter(size, rank)

	Create a rank filter. The rank filter sorts all pixels in
a window of the given size, and returns the rank‘th value.

	Parameters:	
	size – The kernel size, in pixels.

	rank – What pixel value to pick. Use 0 for a min filter,
size * size / 2 for a median filter, size * size - 1
for a max filter, etc.

	
class PIL.ImageFilter.MedianFilter(size=3)

	Create a median filter. Picks the median pixel value in a window with the
given size.

	Parameters:	size – The kernel size, in pixels.

	
class PIL.ImageFilter.MinFilter(size=3)

	Create a min filter. Picks the lowest pixel value in a window with the
given size.

	Parameters:	size – The kernel size, in pixels.

	
class PIL.ImageFilter.MaxFilter(size=3)

	Create a max filter. Picks the largest pixel value in a window with the
given size.

	Parameters:	size – The kernel size, in pixels.

	
class PIL.ImageFilter.ModeFilter(size=3)

	Create a mode filter. Picks the most frequent pixel value in a box with the
given size. Pixel values that occur only once or twice are ignored; if no
pixel value occurs more than twice, the original pixel value is preserved.

	Parameters:	size – The kernel size, in pixels.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageFont Module

The ImageFont module defines a class with the same name. Instances of
this class store bitmap fonts, and are used with the
PIL.ImageDraw.Draw.text() method.

PIL uses its own font file format to store bitmap fonts. You can use the
:command`pilfont` utility to convert BDF and PCF font descriptors (X window
font formats) to this format.

Starting with version 1.1.4, PIL can be configured to support TrueType and
OpenType fonts (as well as other font formats supported by the FreeType
library). For earlier versions, TrueType support is only available as part of
the imToolkit package

Example

from PIL import ImageFont, ImageDraw

draw = ImageDraw.Draw(image)

use a bitmap font
font = ImageFont.load("arial.pil")

draw.text((10, 10), "hello", font=font)

use a truetype font
font = ImageFont.truetype("arial.ttf", 15)

draw.text((10, 25), "world", font=font)

Functions

	
PIL.ImageFont.load(filename)

	Load a font file. This function loads a font object from the given
bitmap font file, and returns the corresponding font object.

	Parameters:	filename – Name of font file.

	Returns:	A font object.

	Raises IOError:	If the file could not be read.

	
PIL.ImageFont.load_path(filename)

	Load font file. Same as load(), but searches for a
bitmap font along the Python path.

	Parameters:	filename – Name of font file.

	Returns:	A font object.

	Raises IOError:	If the file could not be read.

	
PIL.ImageFont.truetype(font=None, size=10, index=0, encoding='', filename=None)

	Load a TrueType or OpenType font file, and create a font object.
This function loads a font object from the given file, and creates
a font object for a font of the given size.

This function requires the _imagingft service.

	Parameters:	
	filename – A truetype font file. Under Windows, if the file
is not found in this filename, the loader also looks in
Windows fonts/ directory.

	size – The requested size, in points.

	index – Which font face to load (default is first available face).

	encoding – Which font encoding to use (default is Unicode). Common
encodings are “unic” (Unicode), “symb” (Microsoft
Symbol), “ADOB” (Adobe Standard), “ADBE” (Adobe Expert),
and “armn” (Apple Roman). See the FreeType documentation
for more information.

	Returns:	A font object.

	Raises IOError:	If the file could not be read.

	
PIL.ImageFont.load_default()

	Load a “better than nothing” default font.

New in version 1.1.4.

	Returns:	A font object.

Methods

	
PIL.ImageFont.ImageFont.getsize(text)

	

	Returns:	(width, height)

	
PIL.ImageFont.ImageFont.getmask(text, mode='')

	Create a bitmap for the text.

If the font uses antialiasing, the bitmap should have mode “L” and use a
maximum value of 255. Otherwise, it should have mode “1”.

	Parameters:	
	text – Text to render.

	mode – Used by some graphics drivers to indicate what mode the
driver prefers; if empty, the renderer may return either
mode. Note that the mode is always a string, to simplify
C-level implementations.

New in version 1.1.5.

	Returns:	An internal PIL storage memory instance as defined by the
PIL.Image.core interface module.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageGrab Module (Windows-only)

The ImageGrab module can be used to copy the contents of the screen
or the clipboard to a PIL image memory.

Note

The current version works on Windows only.

New in version 1.1.3.

	
PIL.ImageGrab.grab(bbox=None)

	Take a snapshot of the screen. The pixels inside the bounding box are
returned as an “RGB” image. If the bounding box is omitted, the entire
screen is copied.

New in version 1.1.3.

	Parameters:	bbox – What region to copy. Default is the entire screen.

	Returns:	An image

	
PIL.ImageGrab.grabclipboard()

	Take a snapshot of the clipboard image, if any.

New in version 1.1.4.

	Returns:	An image, a list of filenames, or None if the clipboard does
not contain image data or filenames. Note that if a list is
returned, the filenames may not represent image files.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageMath Module

The ImageMath module can be used to evaluate “image expressions”. The
module provides a single eval function, which takes an expression string and
one or more images.

Example: Using the ImageMath module

import Image, ImageMath

im1 = Image.open("image1.jpg")
im2 = Image.open("image2.jpg")

out = ImageMath.eval("convert(min(a, b), 'L')", a=im1, b=im2)
out.save("result.png")

	
PIL.ImageMath.eval(expression, environment)

	Evaluate expression in the given environment.

In the current version, ImageMath only supports
single-layer images. To process multi-band images, use the
split() method or merge()
function.

	Parameters:	
	expression – A string which uses the standard Python expression
syntax. In addition to the standard operators, you can
also use the functions described below.

	environment – A dictionary that maps image names to Image instances.
You can use one or more keyword arguments instead of a
dictionary, as shown in the above example. Note that
the names must be valid Python identifiers.

	Returns:	An image, an integer value, a floating point value,
or a pixel tuple, depending on the expression.

Expression syntax

Expressions are standard Python expressions, but they’re evaluated in a
non-standard environment. You can use PIL methods as usual, plus the following
set of operators and functions:

Standard Operators

You can use standard arithmetical operators for addition (+), subtraction (-),
multiplication (*), and division (/).

The module also supports unary minus (-), modulo (%), and power (**) operators.

Note that all operations are done with 32-bit integers or 32-bit floating
point values, as necessary. For example, if you add two 8-bit images, the
result will be a 32-bit integer image. If you add a floating point constant to
an 8-bit image, the result will be a 32-bit floating point image.

You can force conversion using the convert(),
float(), and int() functions
described below.

Bitwise Operators

The module also provides operations that operate on individual bits. This
includes and (&), or (|), and exclusive or (^). You can also invert (~) all
pixel bits.

Note that the operands are converted to 32-bit signed integers before the
bitwise operation is applied. This means that you’ll get negative values if
you invert an ordinary greyscale image. You can use the and (&) operator to
mask off unwanted bits.

Bitwise operators don’t work on floating point images.

Logical Operators

Logical operators like and [http://docs.python.org/2/reference/expressions.html#and], or [http://docs.python.org/2/reference/expressions.html#or], and not [http://docs.python.org/2/reference/expressions.html#not] work
on entire images, rather than individual pixels.

An empty image (all pixels zero) is treated as false. All other images are
treated as true.

Note that and [http://docs.python.org/2/reference/expressions.html#and] and or [http://docs.python.org/2/reference/expressions.html#or] return the last evaluated operand,
while not always returns a boolean value.

Built-in Functions

These functions are applied to each individual pixel.

	
abs(image)

	Absolute value.

	
convert(image, mode)

	Convert image to the given mode. The mode must be given as a string
constant.

	
float(image)

	Convert image to 32-bit floating point. This is equivalent to
convert(image, “F”).

	
int(image)

	Convert image to 32-bit integer. This is equivalent to convert(image, “I”).

Note that 1-bit and 8-bit images are automatically converted to 32-bit
integers if necessary to get a correct result.

	
max(image1, image2)

	Maximum value.

	
min(image1, image2)

	Minimum value.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageMorph Module

The ImageMorph module provides morphology operations on images.

	
class PIL.ImageMorph.LutBuilder(patterns=None, op_name=None)

	A class for building a MorphLut from a descriptive language

The input patterns is a list of a strings sequences like these:

4:(...
 .1.
 111)->1

(whitespaces including linebreaks are ignored). The option 4
describes a series of symmetry operations (in this case a
4-rotation), the pattern is described by:

	. or X - Ignore

	1 - Pixel is on

	0 - Pixel is off

The result of the operation is described after “->” string.

The default is to return the current pixel value, which is
returned if no other match is found.

Operations:

	4 - 4 way rotation

	N - Negate

	1 - Dummy op for no other operation (an op must always be given)

	M - Mirroring

Example:

lb = LutBuilder(patterns = ["4:(... .1. 111)->1"])
lut = lb.build_lut()

	
add_patterns(patterns)

	

	
build_default_lut()

	

	
build_lut()

	Compile all patterns into a morphology lut.

TBD :Build based on (file) morphlut:modify_lut

	
get_lut()

	

	
class PIL.ImageMorph.MorphOp(lut=None, op_name=None, patterns=None)

	A class for binary morphological operators

	
apply(image)

	Run a single morphological operation on an image

Returns a tuple of the number of changed pixels and the
morphed image

	
get_on_pixels(image)

	Get a list of all turned on pixels in a binary image

Returns a list of tuples of (x,y) coordinates
of all matching pixels.

	
load_lut(filename)

	Load an operator from an mrl file

	
match(image)

	Get a list of coordinates matching the morphological operation on
an image.

Returns a list of tuples of (x,y) coordinates
of all matching pixels.

	
save_lut(filename)

	Save an operator to an mrl file

	
set_lut(lut)

	Set the lut from an external source

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageOps Module

The ImageOps module contains a number of ‘ready-made’ image
processing operations. This module is somewhat experimental, and most operators
only work on L and RGB images.

Only bug fixes have been added since the Pillow fork.

New in version 1.1.3.

	
PIL.ImageOps.autocontrast(image, cutoff=0, ignore=None)

	Maximize (normalize) image contrast. This function calculates a
histogram of the input image, removes cutoff percent of the
lightest and darkest pixels from the histogram, and remaps the image
so that the darkest pixel becomes black (0), and the lightest
becomes white (255).

	Parameters:	
	image – The image to process.

	cutoff – How many percent to cut off from the histogram.

	ignore – The background pixel value (use None for no background).

	Returns:	An image.

	
PIL.ImageOps.colorize(image, black, white)

	Colorize grayscale image. The black and white
arguments should be RGB tuples; this function calculates a color
wedge mapping all black pixels in the source image to the first
color, and all white pixels to the second color.

	Parameters:	
	image – The image to colorize.

	black – The color to use for black input pixels.

	white – The color to use for white input pixels.

	Returns:	An image.

	
PIL.ImageOps.crop(image, border=0)

	Remove border from image. The same amount of pixels are removed
from all four sides. This function works on all image modes.

See also

crop()

	Parameters:	
	image – The image to crop.

	border – The number of pixels to remove.

	Returns:	An image.

	
PIL.ImageOps.deform(image, deformer, resample=2)

	Deform the image.

	Parameters:	
	image – The image to deform.

	deformer – A deformer object. Any object that implements a
getmesh method can be used.

	resample – What resampling filter to use.

	Returns:	An image.

	
PIL.ImageOps.equalize(image, mask=None)

	Equalize the image histogram. This function applies a non-linear
mapping to the input image, in order to create a uniform
distribution of grayscale values in the output image.

	Parameters:	
	image – The image to equalize.

	mask – An optional mask. If given, only the pixels selected by
the mask are included in the analysis.

	Returns:	An image.

	
PIL.ImageOps.expand(image, border=0, fill=0)

	Add border to the image

	Parameters:	
	image – The image to expand.

	border – Border width, in pixels.

	fill – Pixel fill value (a color value). Default is 0 (black).

	Returns:	An image.

	
PIL.ImageOps.fit(image, size, method=0, bleed=0.0, centering=(0.5, 0.5))

	Returns a sized and cropped version of the image, cropped to the
requested aspect ratio and size.

This function was contributed by Kevin Cazabon.

	Parameters:	
	size – The requested output size in pixels, given as a
(width, height) tuple.

	method – What resampling method to use. Default is
PIL.Image.NEAREST.

	bleed – Remove a border around the outside of the image (from all
four edges. The value is a decimal percentage (use 0.01 for
one percent). The default value is 0 (no border).

	centering – Control the cropping position. Use (0.5, 0.5) for
center cropping (e.g. if cropping the width, take 50% off
of the left side, and therefore 50% off the right side).
(0.0, 0.0) will crop from the top left corner (i.e. if
cropping the width, take all of the crop off of the right
side, and if cropping the height, take all of it off the
bottom). (1.0, 0.0) will crop from the bottom left
corner, etc. (i.e. if cropping the width, take all of the
crop off the left side, and if cropping the height take
none from the top, and therefore all off the bottom).

	Returns:	An image.

	
PIL.ImageOps.flip(image)

	Flip the image vertically (top to bottom).

	Parameters:	image – The image to flip.

	Returns:	An image.

	
PIL.ImageOps.grayscale(image)

	Convert the image to grayscale.

	Parameters:	image – The image to convert.

	Returns:	An image.

	
PIL.ImageOps.invert(image)

	Invert (negate) the image.

	Parameters:	image – The image to invert.

	Returns:	An image.

	
PIL.ImageOps.mirror(image)

	Flip image horizontally (left to right).

	Parameters:	image – The image to mirror.

	Returns:	An image.

	
PIL.ImageOps.posterize(image, bits)

	Reduce the number of bits for each color channel.

	Parameters:	
	image – The image to posterize.

	bits – The number of bits to keep for each channel (1-8).

	Returns:	An image.

	
PIL.ImageOps.solarize(image, threshold=128)

	Invert all pixel values above a threshold.

	Parameters:	
	image – The image to solarize.

	threshold – All pixels above this greyscale level are inverted.

	Returns:	An image.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImagePalette Module

The ImagePalette module contains a class of the same name to
represent the color palette of palette mapped images.

Note

This module was never well-documented. It hasn’t changed since 2001,
though, so it’s probably safe for you to read the source code and puzzle
out the internals if you need to.

The ImagePalette class has several methods,
but they are all marked as “experimental.” Read that as you will. The
[source] link is there for a reason.

	
class PIL.ImagePalette.ImagePalette(mode='RGB', palette=None, size=0)

	Color palette for palette mapped images

	
getcolor(color)

	Given an rgb tuple, allocate palette entry.

Warning

This method is experimental.

	
getdata()

	Get palette contents in format suitable # for the low-level
im.putpalette primitive.

Warning

This method is experimental.

	
save(fp)

	Save palette to text file.

Warning

This method is experimental.

	
tobytes()

	Convert palette to bytes.

Warning

This method is experimental.

	
tostring()

	Convert palette to bytes.

Warning

This method is experimental.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImagePath Module

The ImagePath module is used to store and manipulate 2-dimensional
vector data. Path objects can be passed to the methods on the
ImageDraw module.

	
class PIL.ImagePath.Path

	A path object. The coordinate list can be any sequence object containing
either 2-tuples [(x, y), …] or numeric values [x, y, …].

You can also create a path object from another path object.

In 1.1.6 and later, you can also pass in any object that implements
Python’s buffer API. The buffer should provide read access, and contain C
floats in machine byte order.

The path object implements most parts of the Python sequence interface, and
behaves like a list of (x, y) pairs. You can use len(), item access, and
slicing as usual. However, the current version does not support slice
assignment, or item and slice deletion.

	Parameters:	xy – A sequence. The sequence can contain 2-tuples [(x, y), ...]
or a flat list of numbers [x, y, ...].

	
PIL.ImagePath.Path.compact(distance=2)

	Compacts the path, by removing points that are close to each other. This
method modifies the path in place, and returns the number of points left in
the path.

distance is measured as Manhattan distance [http://en.wikipedia.org/wiki/Manhattan_distance] and defaults to two
pixels.

	
PIL.ImagePath.Path.getbbox()

	Gets the bounding box of the path.

	Returns:	(x0, y0, x1, y1)

	
PIL.ImagePath.Path.map(function)

	Maps the path through a function.

	
PIL.ImagePath.Path.tolist(flat=0)

	Converts the path to a Python list [(x, y), …].

	Parameters:	flat – By default, this function returns a list of 2-tuples
[(x, y), ...]. If this argument is True, it
returns a flat list [x, y, ...] instead.

	Returns:	A list of coordinates. See flat.

	
PIL.ImagePath.Path.transform(matrix)

	Transforms the path in place, using an affine transform. The matrix is a
6-tuple (a, b, c, d, e, f), and each point is mapped as follows:

xOut = xIn * a + yIn * b + c
yOut = xIn * d + yIn * e + f

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageQt Module

The ImageQt module contains support for creating PyQt4 or PyQt5 QImage objects
from PIL images.

New in version 1.1.6.

	
class ImageQt.ImageQt(image)

	Creates an ImageQt object from a PIL
Image object. This class is a subclass of
QtGui.QImage, which means that you can pass the resulting objects directly
to PyQt4/5 API functions and methods.

This operation is currently supported for mode 1, L, P, RGB, and RGBA
images. To handle other modes, you need to convert the image first.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageSequence Module

The ImageSequence module contains a wrapper class that lets you
iterate over the frames of an image sequence.

Extracting frames from an animation

from PIL import Image, ImageSequence

im = Image.open("animation.fli")

index = 1
for frame in ImageSequence.Iterator(im):
 frame.save("frame%d.png" % index)
 index = index + 1

The Iterator class

	
class PIL.ImageSequence.Iterator(im)

	This class implements an iterator object that can be used to loop
over an image sequence.

You can use the [] operator to access elements by index. This operator
will raise an IndexError if you try to access a nonexistent
frame.

	Parameters:	im – An image object.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageStat Module

The ImageStat module calculates global statistics for an image, or
for a region of an image.

	
class PIL.ImageStat.Stat(image_or_list, mask=None)

	Calculate statistics for the given image. If a mask is included,
only the regions covered by that mask are included in the
statistics. You can also pass in a previously calculated histogram.

	Parameters:	
	image – A PIL image, or a precalculated histogram.

	mask – An optional mask.

	
extrema

	Min/max values for each band in the image.

	
count

	Total number of pixels for each band in the image.

	
sum

	Sum of all pixels for each band in the image.

	
sum2

	Squared sum of all pixels for each band in the image.

	
mean

	Average (arithmetic mean) pixel level for each band in the image.

	
median

	Median pixel level for each band in the image.

	
rms

	RMS (root-mean-square) for each band in the image.

	
var

	Variance for each band in the image.

	
stddev

	Standard deviation for each band in the image.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageTk Module

The ImageTk module contains support to create and modify Tkinter
BitmapImage and PhotoImage objects from PIL images.

For examples, see the demo programs in the Scripts directory.

	
class PIL.ImageTk.BitmapImage(image=None, **kw)

	A Tkinter-compatible bitmap image. This can be used everywhere Tkinter
expects an image object.

The given image must have mode “1”. Pixels having value 0 are treated as
transparent. Options, if any, are passed on to Tkinter. The most commonly
used option is foreground, which is used to specify the color for the
non-transparent parts. See the Tkinter documentation for information on
how to specify colours.

	Parameters:	image – A PIL image.

	
height()

	Get the height of the image.

	Returns:	The height, in pixels.

	
width()

	Get the width of the image.

	Returns:	The width, in pixels.

	
class PIL.ImageTk.PhotoImage(image=None, size=None, **kw)

	A Tkinter-compatible photo image. This can be used
everywhere Tkinter expects an image object. If the image is an RGBA
image, pixels having alpha 0 are treated as transparent.

The constructor takes either a PIL image, or a mode and a size.
Alternatively, you can use the file or data options to initialize
the photo image object.

	Parameters:	
	image – Either a PIL image, or a mode string. If a mode string is
used, a size must also be given.

	size – If the first argument is a mode string, this defines the size
of the image.

	file – A filename to load the image from (using
Image.open(file)).

	data – An 8-bit string containing image data (as loaded from an
image file).

	
height()

	Get the height of the image.

	Returns:	The height, in pixels.

	
paste(im, box=None)

	Paste a PIL image into the photo image. Note that this can
be very slow if the photo image is displayed.

	Parameters:	
	im – A PIL image. The size must match the target region. If the
mode does not match, the image is converted to the mode of
the bitmap image.

	box – A 4-tuple defining the left, upper, right, and lower pixel
coordinate. If None is given instead of a tuple, all of
the image is assumed.

	
width()

	Get the width of the image.

	Returns:	The width, in pixels.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ImageWin Module (Windows-only)

The ImageWin module contains support to create and display images on
Windows.

ImageWin can be used with PythonWin and other user interface toolkits that
provide access to Windows device contexts or window handles. For example,
Tkinter makes the window handle available via the winfo_id method:

from PIL import ImageWin

dib = ImageWin.Dib(...)

hwnd = ImageWin.HWND(widget.winfo_id())
dib.draw(hwnd, xy)

	
class PIL.ImageWin.Dib(image, size=None)

	A Windows bitmap with the given mode and size. The mode can be one of “1”,
“L”, “P”, or “RGB”.

If the display requires a palette, this constructor creates a suitable
palette and associates it with the image. For an “L” image, 128 greylevels
are allocated. For an “RGB” image, a 6x6x6 colour cube is used, together
with 20 greylevels.

To make sure that palettes work properly under Windows, you must call the
palette method upon certain events from Windows.

	Parameters:	
	image – Either a PIL image, or a mode string. If a mode string is
used, a size must also be given. The mode can be one of “1”,
“L”, “P”, or “RGB”.

	size – If the first argument is a mode string, this
defines the size of the image.

	
draw(handle, dst, src=None)

	Same as expose, but allows you to specify where to draw the image, and
what part of it to draw.

The destination and source areas are given as 4-tuple rectangles. If
the source is omitted, the entire image is copied. If the source and
the destination have different sizes, the image is resized as
necessary.

	
expose(handle)

	Copy the bitmap contents to a device context.

	Parameters:	handle – Device context (HDC), cast to a Python integer, or an
HDC or HWND instance. In PythonWin, you can use the
CDC.GetHandleAttrib() to get a suitable handle.

	
frombytes(buffer)

	Load display memory contents from byte data.

	Parameters:	buffer – A buffer containing display data (usually
data returned from tobytes)

	
paste(im, box=None)

	Paste a PIL image into the bitmap image.

	Parameters:	
	im – A PIL image. The size must match the target region.
If the mode does not match, the image is converted to the
mode of the bitmap image.

	box – A 4-tuple defining the left, upper, right, and
lower pixel coordinate. If None is given instead of a
tuple, all of the image is assumed.

	
query_palette(handle)

	Installs the palette associated with the image in the given device
context.

This method should be called upon QUERYNEWPALETTE and
PALETTECHANGED events from Windows. If this method returns a
non-zero value, one or more display palette entries were changed, and
the image should be redrawn.

	Parameters:	handle – Device context (HDC), cast to a Python integer, or an
HDC or HWND instance.

	Returns:	A true value if one or more entries were changed (this
indicates that the image should be redrawn).

	
tobytes()

	Copy display memory contents to bytes object.

	Returns:	A bytes object containing display data.

	
class PIL.ImageWin.HDC(dc)

	Wraps an HDC integer. The resulting object can be passed to the
draw() and expose()
methods.

	
class PIL.ImageWin.HWND(wnd)

	Wraps an HWND integer. The resulting object can be passed to the
draw() and expose()
methods, instead of a DC.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

ExifTags Module

The ExifTags module exposes two dictionaries which
provide constants and clear-text names for various well-known EXIF tags.

	
class PIL.ExifTags.TAGS

	The TAG dictionary maps 16-bit integer EXIF tag enumerations to
descriptive string names. For instance:

>>> from PIL.ExifTags import TAGS
>>> TAGS[0x010e]
'ImageDescription'

	
class PIL.ExifTags.GPSTAGS

	The GPSTAGS dictionary maps 8-bit integer EXIF gps enumerations to
descriptive string names. For instance:

>>> from PIL.ExifTags import GPSTAGS
>>> GPSTAGS[20]
'GPSDestLatitude'

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

OleFileIO Module

The OleFileIO module reads Microsoft OLE2 files (also called
Structured Storage or Microsoft Compound Document File Format), such
as Microsoft Office documents, Image Composer and FlashPix files, and
Outlook messages.

This module is the OleFileIO_PL [http://www.decalage.info/python/olefileio] project by Philippe Lagadec, v0.30,
merged back into Pillow.

How to use this module

For more information, see also the file PIL/OleFileIO.py, sample
code at the end of the module itself, and docstrings within the code.

About the structure of OLE files

An OLE file can be seen as a mini file system or a Zip archive: It
contains streams of data that look like files embedded within the
OLE file. Each stream has a name. For example, the main stream of a MS
Word document containing its text is named “WordDocument”.

An OLE file can also contain storages. A storage is a folder that
contains streams or other storages. For example, a MS Word document with
VBA macros has a storage called “Macros”.

Special streams can contain properties. A property is a specific
value that can be used to store information such as the metadata of a
document (title, author, creation date, etc). Property stream names
usually start with the character ‘05’.

For example, a typical MS Word document may look like this:

\x05DocumentSummaryInformation (stream)
\x05SummaryInformation (stream)
WordDocument (stream)
Macros (storage)
 PROJECT (stream)
 PROJECTwm (stream)
 VBA (storage)
 Module1 (stream)
 ThisDocument (stream)
 _VBA_PROJECT (stream)
 dir (stream)
ObjectPool (storage)

Test if a file is an OLE container

Use isOleFile to check if the first bytes of the file contain the Magic
for OLE files, before opening it. isOleFile returns True if it is an OLE
file, False otherwise.

assert OleFileIO.isOleFile('myfile.doc')

Open an OLE file from disk

Create an OleFileIO object with the file path as parameter:

ole = OleFileIO.OleFileIO('myfile.doc')

Open an OLE file from a file-like object

This is useful if the file is not on disk, e.g. already stored in a
string or as a file-like object.

ole = OleFileIO.OleFileIO(f)

For example the code below reads a file into a string, then uses BytesIO
to turn it into a file-like object.

data = open('myfile.doc', 'rb').read()
f = io.BytesIO(data) # or StringIO.StringIO for Python 2.x
ole = OleFileIO.OleFileIO(f)

How to handle malformed OLE files

By default, the parser is configured to be as robust and permissive as
possible, allowing to parse most malformed OLE files. Only fatal errors
will raise an exception. It is possible to tell the parser to be more
strict in order to raise exceptions for files that do not fully conform
to the OLE specifications, using the raise_defect option:

ole = OleFileIO.OleFileIO('myfile.doc', raise_defects=DEFECT_INCORRECT)

When the parsing is done, the list of non-fatal issues detected is
available as a list in the parsing_issues attribute of the OleFileIO
object:

print('Non-fatal issues raised during parsing:')
if ole.parsing_issues:
 for exctype, msg in ole.parsing_issues:
 print('- %s: %s' % (exctype.__name__, msg))
else:
 print('None')

Syntax for stream and storage path

Two different syntaxes are allowed for methods that need or return the
path of streams and storages:

	Either a list of strings including all the storages from the root
up to the stream/storage name. For example a stream called
“WordDocument” at the root will have [‘WordDocument’] as full path. A
stream called “ThisDocument” located in the storage “Macros/VBA” will
be [‘Macros’, ‘VBA’, ‘ThisDocument’]. This is the original syntax
from PIL. While hard to read and not very convenient, this syntax
works in all cases.

	Or a single string with slashes to separate storage and stream
names (similar to the Unix path syntax). The previous examples would
be ‘WordDocument’ and ‘Macros/VBA/ThisDocument’. This syntax is
easier, but may fail if a stream or storage name contains a slash.

Both are case-insensitive.

Switching between the two is easy:

slash_path = '/'.join(list_path)
list_path = slash_path.split('/')

Get the list of streams

listdir() returns a list of all the streams contained in the OLE file,
including those stored in storages. Each stream is listed itself as a
list, as described above.

print(ole.listdir())

Sample result:

[['\x01CompObj'], ['\x05DocumentSummaryInformation'], ['\x05SummaryInformation']
, ['1Table'], ['Macros', 'PROJECT'], ['Macros', 'PROJECTwm'], ['Macros', 'VBA',
'Module1'], ['Macros', 'VBA', 'ThisDocument'], ['Macros', 'VBA', '_VBA_PROJECT']
, ['Macros', 'VBA', 'dir'], ['ObjectPool'], ['WordDocument']]

As an option it is possible to choose if storages should also be listed,
with or without streams:

ole.listdir (streams=False, storages=True)

Test if known streams/storages exist:

exists(path) checks if a given stream or storage exists in the OLE file.

if ole.exists('worddocument'):
 print("This is a Word document.")
 if ole.exists('macros/vba'):
 print("This document seems to contain VBA macros.")

Read data from a stream

openstream(path) opens a stream as a file-like object.

The following example extracts the “Pictures” stream from a PPT file:

pics = ole.openstream('Pictures')
data = pics.read()

Get information about a stream/storage

Several methods can provide the size, type and timestamps of a given
stream/storage:

get_size(path) returns the size of a stream in bytes:

s = ole.get_size('WordDocument')

get_type(path) returns the type of a stream/storage, as one of the
following constants: STGTY_STREAM for a stream, STGTY_STORAGE for a
storage, STGTY_ROOT for the root entry, and False for a non existing
path.

t = ole.get_type('WordDocument')

get_ctime(path) and get_mtime(path) return the creation and
modification timestamps of a stream/storage, as a Python datetime object
with UTC timezone. Please note that these timestamps are only present if
the application that created the OLE file explicitly stored them, which
is rarely the case. When not present, these methods return None.

c = ole.get_ctime('WordDocument')
m = ole.get_mtime('WordDocument')

The root storage is a special case: You can get its creation and
modification timestamps using the OleFileIO.root attribute:

c = ole.root.getctime()
m = ole.root.getmtime()

Extract metadata

get_metadata() will check if standard property streams exist, parse all
the properties they contain, and return an OleMetadata object with the
found properties as attributes.

meta = ole.get_metadata()
print('Author:', meta.author)
print('Title:', meta.title)
print('Creation date:', meta.create_time)
print all metadata:
meta.dump()

Available attributes include:

codepage, title, subject, author, keywords, comments, template,
last_saved_by, revision_number, total_edit_time, last_printed, create_time,
last_saved_time, num_pages, num_words, num_chars, thumbnail,
creating_application, security, codepage_doc, category, presentation_target,
bytes, lines, paragraphs, slides, notes, hidden_slides, mm_clips,
scale_crop, heading_pairs, titles_of_parts, manager, company, links_dirty,
chars_with_spaces, unused, shared_doc, link_base, hlinks, hlinks_changed,
version, dig_sig, content_type, content_status, language, doc_version

See the source code of the OleMetadata class for more information.

Parse a property stream

get_properties(path) can be used to parse any property stream that is
not handled by get_metadata. It returns a dictionary indexed by
integers. Each integer is the index of the property, pointing to its
value. For example in the standard property stream
‘05SummaryInformation’, the document title is property #2, and the
subject is #3.

p = ole.getproperties('specialprops')

By default as in the original PIL version, timestamp properties are
converted into a number of seconds since Jan 1,1601. With the option
convert_time, you can obtain more convenient Python datetime objects
(UTC timezone). If some time properties should not be converted (such as
total editing time in ‘05SummaryInformation’), the list of indexes can
be passed as no_conversion:

p = ole.getproperties('specialprops', convert_time=True, no_conversion=[10])

Close the OLE file

Unless your application is a simple script that terminates after
processing an OLE file, do not forget to close each OleFileIO object
after parsing to close the file on disk.

ole.close()

Use OleFileIO as a script

OleFileIO can also be used as a script from the command-line to
display the structure of an OLE file and its metadata, for example:

PIL/OleFileIO.py myfile.doc

You can use the option -c to check that all streams can be read fully,
and -d to generate very verbose debugging information.

How to contribute

The code is available in a Mercurial repository on
bitbucket [https://bitbucket.org/decalage/olefileio_pl]. You may use
it to submit enhancements or to report any issue.

If you would like to help us improve this module, or simply provide
feedback, please contact me [http://decalage.info/contact]. You can
help in many ways:

	test this module on different platforms / Python versions

	find and report bugs

	improve documentation, code samples, docstrings

	write unittest test cases

	provide tricky malformed files

How to report bugs

To report a bug, for example a normal file which is not parsed
correctly, please use the issue reporting
page [https://bitbucket.org/decalage/olefileio_pl/issues?status=new&status=open],
or if you prefer to do it privately, use this contact
form [http://decalage.info/contact]. Please provide all the
information about the context and how to reproduce the bug.

If possible please join the debugging output of OleFileIO. For this,
launch the following command :

PIL/OleFileIO.py -d -c file >debug.txt

Classes and Methods

	
class PIL.OleFileIO.OleFileIO(filename=None, raise_defects=40)

	OLE container object

This class encapsulates the interface to an OLE 2 structured
storage file. Use the listdir() and
openstream() methods to
access the contents of this file.

Object names are given as a list of strings, one for each subentry
level. The root entry should be omitted. For example, the following
code extracts all image streams from a Microsoft Image Composer file:

ole = OleFileIO("fan.mic")

for entry in ole.listdir():
 if entry[1:2] == "Image":
 fin = ole.openstream(entry)
 fout = open(entry[0:1], "wb")
 while True:
 s = fin.read(8192)
 if not s:
 break
 fout.write(s)

You can use the viewer application provided with the Python Imaging
Library to view the resulting files (which happens to be standard
TIFF files).

	
close()

	close the OLE file, to release the file object

	
dumpdirectory()

	Dump directory (for debugging only)

	
dumpfat(fat, firstindex=0)

	Displays a part of FAT in human-readable form for debugging purpose

	
dumpsect(sector, firstindex=0)

	Displays a sector in a human-readable form, for debugging purpose.

	
exists(filename)

	Test if given filename exists as a stream or a storage in the OLE
container.

	Parameters:	filename – path of stream in storage tree. (see openstream for syntax)

	Returns:	True if object exist, else False.

	
get_metadata()

	Parse standard properties streams, return an OleMetadata object
containing all the available metadata.
(also stored in the metadata attribute of the OleFileIO object)

new in version 0.25

	
get_rootentry_name()

	Return root entry name. Should usually be ‘Root Entry’ or ‘R’ in most
implementations.

	
get_size(filename)

	Return size of a stream in the OLE container, in bytes.

	Parameters:	filename – path of stream in storage tree (see openstream for syntax)

	Returns:	size in bytes (long integer)

	Raises:	
	IOError – if file not found

	TypeError – if this is not a stream

	
get_type(filename)

	Test if given filename exists as a stream or a storage in the OLE
container, and return its type.

	Parameters:	filename – path of stream in storage tree. (see openstream for syntax)

	Returns:	False if object does not exist, its entry type (>0) otherwise:
	STGTY_STREAM: a stream

	STGTY_STORAGE: a storage

	STGTY_ROOT: the root entry

	
getctime(filename)

	Return creation time of a stream/storage.

	Parameters:	filename – path of stream/storage in storage tree. (see openstream for
syntax)

	Returns:	None if creation time is null, a python datetime object
otherwise (UTC timezone)

new in version 0.26

	
getmtime(filename)

	Return modification time of a stream/storage.

	Parameters:	filename – path of stream/storage in storage tree. (see openstream for
syntax)

	Returns:	None if modification time is null, a python datetime object
otherwise (UTC timezone)

new in version 0.26

	
getproperties(filename, convert_time=False, no_conversion=None)

	Return properties described in substream.

	Parameters:	
	filename – path of stream in storage tree (see openstream for syntax)

	convert_time – bool, if True timestamps will be converted to Python datetime

	no_conversion – None or list of int, timestamps not to be converted
(for example total editing time is not a real timestamp)

	Returns:	a dictionary of values indexed by id (integer)

	
getsect(sect)

	Read given sector from file on disk.

	Parameters:	sect – sector index

	Returns:	a string containing the sector data.

	
listdir(streams=True, storages=False)

	Return a list of streams stored in this file

	Parameters:	
	streams – bool, include streams if True (True by default) - new in v0.26

	storages – bool, include storages if True (False by default) - new in v0.26
(note: the root storage is never included)

	
loaddirectory(sect)

	Load the directory.

	Parameters:	sect – sector index of directory stream.

	
loadfat(header)

	Load the FAT table.

	
loadfat_sect(sect)

	Adds the indexes of the given sector to the FAT

	Parameters:	sect – string containing the first FAT sector, or array of long integers

	Returns:	index of last FAT sector.

	
loadminifat()

	Load the MiniFAT table.

	
open(filename)

	Open an OLE2 file.
Reads the header, FAT and directory.

	Parameters:	filename – string-like or file-like object

	
openstream(filename)

	Open a stream as a read-only file object (BytesIO).

	Parameters:	filename – path of stream in storage tree (except root entry), either:

	a string using Unix path syntax, for example:
‘storage_1/storage_1.2/stream’

	a list of storage filenames, path to the desired stream/storage.
Example: [‘storage_1’, ‘storage_1.2’, ‘stream’]

	Returns:	file object (read-only)

	Raises IOError:	if filename not found, or if this is not a stream.

	
sect2array(sect)

	convert a sector to an array of 32 bits unsigned integers,
swapping bytes on big endian CPUs such as PowerPC (old Macs)

	
PIL.OleFileIO.isOleFile(filename)

	Test if file is an OLE container (according to its header).

	Parameters:	filename – file name or path (str, unicode)

	Returns:	True if OLE, False otherwise.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

PSDraw Module

The PSDraw module provides simple print support for Postscript
printers. You can print text, graphics and images through this module.

	
class PIL.PSDraw.PSDraw(fp=None)

	Sets up printing to the given file. If file is omitted,
sys.stdout is assumed.

	
begin_document(id=None)

	Set up printing of a document. (Write Postscript DSC header.)

	
end_document()

	Ends printing. (Write Postscript DSC footer.)

	
image(box, im, dpi=None)

	Draw a PIL image, centered in the given box.

	
line(xy0, xy1)

	Draws a line between the two points. Coordinates are given in
Postscript point coordinates (72 points per inch, (0, 0) is the lower
left corner of the page).

	
rectangle(box)

	Draws a rectangle.

	Parameters:	box – A 4-tuple of integers whose order and function is currently
undocumented.

Hint: the tuple is passed into this format string:

%d %d M %d %d 0 Vr

	
setfont(font, size)

	Selects which font to use.

	Parameters:	
	font – A Postscript font name

	size – Size in points.

	
text(xy, text)

	Draws text at the given position. You must use
setfont() before calling this method.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

PixelAccess Class

The PixelAccess class provides read and write access to
PIL.Image data at a pixel level.

Note

Accessing individual pixels is fairly slow. If you are looping over all of the pixels in an image, there is likely a faster way using other parts of the Pillow API.

Example

The following script loads an image, accesses one pixel from it, then
changes it.

from PIL import Image
im = Image.open('hopper.jpg')
px = im.load()
print (px[4,4])
px[4,4] = (0,0,0)
print (px[4,4])

Results in the following:

(23, 24, 68)
(0, 0, 0)

PixelAccess Class

	
class PixelAccess

	
	
__setitem__(self, xy, color):

	Modifies the pixel at x,y. The color is given as a single
numerical value for single band images, and a tuple for
multi-band images

	Parameters:	
	xy – The pixel coordinate, given as (x, y).

	value – The pixel value.

	
__getitem__(self, xy):

	
	Returns the pixel at x,y. The pixel is returned as a single

	value for single band images or a tuple for multiple band
images

	param xy:	The pixel coordinate, given as (x, y).

	returns:	a pixel value for single band images, a tuple of
pixel values for multiband images.

	
putpixel(self, xy, color):

	Modifies the pixel at x,y. The color is given as a single
numerical value for single band images, and a tuple for
multi-band images

	Parameters:	
	xy – The pixel coordinate, given as (x, y).

	value – The pixel value.

	
getpixel(self, xy):

	
	Returns the pixel at x,y. The pixel is returned as a single

	value for single band images or a tuple for multiple band
images

	param xy:	The pixel coordinate, given as (x, y).

	returns:	a pixel value for single band images, a tuple of
pixel values for multiband images.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

PyAccess Module

The PyAccess module provides a CFFI/Python implementation of the PixelAccess Class. This implementation is far faster on PyPy than the PixelAccess version.

Note

Accessing individual pixels is fairly slow. If you are
looping over all of the pixels in an image, there is likely
a faster way using other parts of the Pillow API.

Example

The following script loads an image, accesses one pixel from it, then changes it.

from PIL import Image
im = Image.open('hopper.jpg')
px = im.load()
print (px[4,4])
px[4,4] = (0,0,0)
print (px[4,4])

Results in the following:

(23, 24, 68)
(0, 0, 0)

PyAccess Class

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

PIL Package (autodoc of remaining modules)

Reference for modules whose documentation has not yet been ported or written
can be found here.

BdfFontFile Module

	
class PIL.BdfFontFile.BdfFontFile(fp)

	Bases: PIL.FontFile.FontFile

	
PIL.BdfFontFile.bdf_char(f)

	

ContainerIO Module

	
class PIL.ContainerIO.ContainerIO(file, offset, length)

	
	
isatty()

	

	
read(n=0)

	

	
readline()

	

	
readlines()

	

	
seek(offset, mode=0)

	

	
tell()

	

FontFile Module

	
class PIL.FontFile.FontFile

	
	
bitmap = None

	

	
compile()

	Create metrics and bitmap

	
save(filename)

	Save font

	
PIL.FontFile.puti16(fp, values)

	

GdImageFile Module

	
class PIL.GdImageFile.GdImageFile(fp=None, filename=None)

	Bases: PIL.ImageFile.ImageFile

	
format = 'GD'

	

	
format_description = 'GD uncompressed images'

	

	
PIL.GdImageFile.open(fp, mode='r')

	

GimpGradientFile Module

	
class PIL.GimpGradientFile.GimpGradientFile(fp)

	Bases: PIL.GimpGradientFile.GradientFile

	
class PIL.GimpGradientFile.GradientFile

	
	
getpalette(entries=256)

	

	
gradient = None

	

	
PIL.GimpGradientFile.curved(middle, pos)

	

	
PIL.GimpGradientFile.linear(middle, pos)

	

	
PIL.GimpGradientFile.sine(middle, pos)

	

	
PIL.GimpGradientFile.sphere_decreasing(middle, pos)

	

	
PIL.GimpGradientFile.sphere_increasing(middle, pos)

	

GimpPaletteFile Module

	
class PIL.GimpPaletteFile.GimpPaletteFile(fp)

	
	
getpalette()

	

	
rawmode = 'RGB'

	

ImageDraw2 Module

	
class PIL.ImageDraw2.Brush(color, opacity=255)

	

	
class PIL.ImageDraw2.Draw(image, size=None, color=None)

	
	
arc(xy, start, end, *options)

	

	
chord(xy, start, end, *options)

	

	
ellipse(xy, *options)

	

	
flush()

	

	
line(xy, *options)

	

	
pieslice(xy, start, end, *options)

	

	
polygon(xy, *options)

	

	
rectangle(xy, *options)

	

	
render(op, xy, pen, brush=None)

	

	
settransform(offset)

	

	
symbol(xy, symbol, *options)

	

	
text(xy, text, font)

	

	
textsize(text, font)

	

	
class PIL.ImageDraw2.Font(color, file, size=12)

	

	
class PIL.ImageDraw2.Pen(color, width=1, opacity=255)

	

ImageFileIO Module

The ImageFileIO module can be used to read an image from a
socket, or any other stream device.

Deprecated. New code should use the PIL.ImageFile.Parser
class in the PIL.ImageFile module instead.

See also

modules PIL.ImageFile.Parser

	
class PIL.ImageFileIO.ImageFileIO(fp)

	Bases: _io.BytesIO

ImageShow Module

	
class PIL.ImageShow.DisplayViewer

	Bases: PIL.ImageShow.UnixViewer

	
get_command_ex(file, **options)

	

	
class PIL.ImageShow.UnixViewer

	Bases: PIL.ImageShow.Viewer

	
show_file(file, **options)

	

	
class PIL.ImageShow.Viewer

	
	
format = None

	

	
get_command(file, **options)

	

	
get_format(image)

	

	
save_image(image)

	

	
show(image, **options)

	

	
show_file(file, **options)

	

	
show_image(image, **options)

	

	
class PIL.ImageShow.XVViewer

	Bases: PIL.ImageShow.UnixViewer

	
get_command_ex(file, title=None, **options)

	

	
PIL.ImageShow.register(viewer, order=1)

	

	
PIL.ImageShow.show(image, title=None, **options)

	

	
PIL.ImageShow.which(executable)

	

ImageTransform Module

	
class PIL.ImageTransform.AffineTransform(data)

	Bases: PIL.ImageTransform.Transform

	
method = 0

	

	
class PIL.ImageTransform.ExtentTransform(data)

	Bases: PIL.ImageTransform.Transform

	
method = 1

	

	
class PIL.ImageTransform.MeshTransform(data)

	Bases: PIL.ImageTransform.Transform

	
method = 4

	

	
class PIL.ImageTransform.QuadTransform(data)

	Bases: PIL.ImageTransform.Transform

	
method = 3

	

	
class PIL.ImageTransform.Transform(data)

	Bases: PIL.Image.ImageTransformHandler

	
getdata()

	

	
transform(size, image, **options)

	

JpegPresets Module

JPEG quality settings equivalent to the Photoshop settings.

More presets can be added to the presets dict if needed.

Can be use when saving JPEG file.

To apply the preset, specify:

quality="preset_name"

To apply only the quantization table:

qtables="preset_name"

To apply only the subsampling setting:

subsampling="preset_name"

Example:

im.save("image_name.jpg", quality="web_high")

Subsampling

Subsampling is the practice of encoding images by implementing less resolution
for chroma information than for luma information.
(ref.: http://en.wikipedia.org/wiki/Chroma_subsampling)

Possible subsampling values are 0, 1 and 2 that correspond to 4:4:4, 4:2:2 and
4:1:1 (or 4:2:0?).

You can get the subsampling of a JPEG with the
JpegImagePlugin.get_subsampling(im) function.

Quantization tables

They are values use by the DCT (Discrete cosine transform) to remove
unnecessary information from the image (the lossy part of the compression).
(ref.: http://en.wikipedia.org/wiki/Quantization_matrix#Quantization_matrices,
http://en.wikipedia.org/wiki/JPEG#Quantization)

You can get the quantization tables of a JPEG with:

im.quantization

This will return a dict with a number of arrays. You can pass this dict
directly as the qtables argument when saving a JPEG.

The tables format between im.quantization and quantization in presets differ in
3 ways:

	The base container of the preset is a list with sublists instead of dict.
dict[0] -> list[0], dict[1] -> list[1], ...

	Each table in a preset is a list instead of an array.

	The zigzag order is remove in the preset (needed by libjpeg >= 6a).

You can convert the dict format to the preset format with the
JpegImagePlugin.convert_dict_qtables(dict_qtables) function.

Libjpeg ref.: http://www.jpegcameras.com/libjpeg/libjpeg-3.html

PaletteFile Module

	
class PIL.PaletteFile.PaletteFile(fp)

	
	
getpalette()

	

	
rawmode = 'RGB'

	

PcfFontFile Module

	
class PIL.PcfFontFile.PcfFontFile(fp)

	Bases: PIL.FontFile.FontFile

	
name = 'name'

	

	
PIL.PcfFontFile.sz(s, o)

	

PngImagePlugin.iTXt Class

	
class PIL.PngImagePlugin.iTXt

	Bases: str [http://docs.python.org/2/library/functions.html#str]

Subclass of string to allow iTXt chunks to look like strings while
keeping their extra information

	
__new__(cls, text, lang, tkey)

	

	Parameters:	
	value – value for this key

	lang – language code

	tkey – UTF-8 version of the key name

PngImagePlugin.PngInfo Class

	
class PIL.PngImagePlugin.PngInfo

	PNG chunk container (for use with save(pnginfo=))

	
add(cid, data)

	Appends an arbitrary chunk. Use with caution.

	Parameters:	
	cid – a byte string, 4 bytes long.

	data – a byte string of the encoded data

	
add_itxt(key, value, lang='', tkey='', zip=False)

	Appends an iTXt chunk.

	Parameters:	
	key – latin-1 encodable text key name

	value – value for this key

	lang – language code

	tkey – UTF-8 version of the key name

	zip – compression flag

	
add_text(key, value, zip=0)

	Appends a text chunk.

	Parameters:	
	key – latin-1 encodable text key name

	value – value for this key, text or an
PIL.PngImagePlugin.iTXt instance

	zip – compression flag

TarIO Module

	
class PIL.TarIO.TarIO(tarfile, file)

	Bases: PIL.ContainerIO.ContainerIO

TiffTags Module

WalImageFile Module

	
PIL.WalImageFile.open(filename)

	

_binary Module

	
PIL._binary.i16be(c, o=0)

	

	
PIL._binary.i16le(c, o=0)

	Converts a 2-bytes (16 bits) string to an integer.

c: string containing bytes to convert
o: offset of bytes to convert in string

	
PIL._binary.i32be(c, o=0)

	

	
PIL._binary.i32le(c, o=0)

	Converts a 4-bytes (32 bits) string to an integer.

c: string containing bytes to convert
o: offset of bytes to convert in string

	
PIL._binary.i8(c)

	

	
PIL._binary.o16be(i)

	

	
PIL._binary.o16le(i)

	

	
PIL._binary.o32be(i)

	

	
PIL._binary.o32le(i)

	

	
PIL._binary.o8(i)

	

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

Appendices

	Image file formats
	Fully supported formats

	Read-only formats

	Write-only formats

	Identify-only formats

	Writing your own file decoder
	Example

	The tile attribute

	Decoding floating point data

	The bit decoder

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Appendices

Image file formats

The Python Imaging Library supports a wide variety of raster file formats.
Nearly 30 different file formats can be identified and read by the library.
Write support is less extensive, but most common interchange and presentation
formats are supported.

The open() function identifies files from their
contents, not their names, but the save() method
looks at the name to determine which format to use, unless the format is given
explicitly.

Fully supported formats

BMP

PIL reads and writes Windows and OS/2 BMP files containing 1, L, P,
or RGB data. 16-colour images are read as P images. Run-length encoding
is not supported.

The open() method sets the following
info properties:

	compression

	Set to bmp_rle if the file is run-length encoded.

EPS

PIL identifies EPS files containing image data, and can read files that contain
embedded raster images (ImageData descriptors). If Ghostscript is available,
other EPS files can be read as well. The EPS driver can also write EPS images.

If Ghostscript is available, you can call the load()
method with the following parameter to affect how Ghostscript renders the EPS

	scale

	Affects the scale of the resultant rasterized image. If the EPS suggests
that the image be rendered at 100px x 100px, setting this parameter to
2 will make the Ghostscript render a 200px x 200px image instead. The
relative position of the bounding box is maintained:

im = Image.open(...)
im.size #(100,100)
im.load(scale=2)
im.size #(200,200)

GIF

PIL reads GIF87a and GIF89a versions of the GIF file format. The library writes
run-length encoded GIF87a files. Note that GIF files are always read as
grayscale (L) or palette mode (P) images.

The open() method sets the following
info properties:

	background

	Default background color (a palette color index).

	duration

	Time between frames in an animation (in milliseconds).

	transparency

	Transparency color index. This key is omitted if the image is not
transparent.

	version

	Version (either GIF87a or GIF89a).

Reading sequences

The GIF loader supports the seek() [http://docs.python.org/2/library/stdtypes.html#file.seek] and tell() [http://docs.python.org/2/library/stdtypes.html#file.tell]
methods. You can seek to the next frame (im.seek(im.tell() + 1), or rewind
the file by seeking to the first frame. Random access is not supported.

Reading local images

The GIF loader creates an image memory the same size as the GIF file’s logical
screen size, and pastes the actual pixel data (the local image) into this
image. If you only want the actual pixel rectangle, you can manipulate the
size and tile
attributes before loading the file:

im = Image.open(...)

if im.tile[0][0] == "gif":
 # only read the first "local image" from this GIF file
 tag, (x0, y0, x1, y1), offset, extra = im.tile[0]
 im.size = (x1 - x0, y1 - y0)
 im.tile = [(tag, (0, 0) + im.size, offset, extra)]

IM

IM is a format used by LabEye and other applications based on the IFUNC image
processing library. The library reads and writes most uncompressed interchange
versions of this format.

IM is the only format that can store all internal PIL formats.

JPEG

PIL reads JPEG, JFIF, and Adobe JPEG files containing L, RGB, or
CMYK data. It writes standard and progressive JFIF files.

Using the draft() method, you can speed things up by
converting RGB images to L, and resize images to 1/2, 1/4 or 1/8 of
their original size while loading them. The draft()
method also configures the JPEG decoder to trade some quality for speed.

The open() method may set the following
info properties if available:

	jfif

	JFIF application marker found. If the file is not a JFIF file, this key is
not present.

	jfif_version

	A tuple representing the jfif version, (major version, minor version).

	jfif_density

	A tuple representing the pixel density of the image, in units specified
by jfif_unit.

	jfif_unit

	Units for the jfif_density:

	0 - No Units

	1 - Pixels per Inch

	2 - Pixels per Centimeter

	dpi

	A tuple representing the reported pixel density in pixels per inch, if
the file is a jfif file and the units are in inches.

	adobe

	Adobe application marker found. If the file is not an Adobe JPEG file, this
key is not present.

	adobe_transform

	Vendor Specific Tag.

	progression

	Indicates that this is a progressive JPEG file.

	icc-profile

	The ICC color profile for the image.

	exif

	Raw EXIF data from the image.

The save() method supports the following options:

	quality

	The image quality, on a scale from 1 (worst) to 95 (best). The default is
75. Values above 95 should be avoided; 100 disables portions of the JPEG
compression algorithm, and results in large files with hardly any gain in
image quality.

	optimize

	If present, indicates that the encoder should make an extra pass over the
image in order to select optimal encoder settings.

	progressive

	If present, indicates that this image should be stored as a progressive
JPEG file.

	dpi

	A tuple of integers representing the pixel density, (x,y).

	icc-profile

	If present, the image is stored with the provided ICC profile. If
this parameter is not provided, the image will be saved with no
profile attached. To preserve the existing profile:

im.save(filename, 'jpeg', icc_profile=im.info.get('icc_profile'))

	exif

	If present, the image will be stored with the provided raw EXIF data.

	subsampling

	If present, sets the subsampling for the encoder.

	keep: Only valid for JPEG files, will retain the original image setting.

	4:4:4, 4:2:2, 4:1:1: Specific sampling values

	-1: equivalent to keep

	0: equivalent to 4:4:4

	1: equivalent to 4:2:2

	2: equivalent to 4:1:1

	qtables

	If present, sets the qtables for the encoder. This is listed as an
advanced option for wizards in the JPEG documentation. Use with
caution. qtables can be one of several types of values:

	a string, naming a preset, e.g. keep, web_low, or web_high

	a list, tuple, or dictionary (with integer keys =
range(len(keys))) of lists of 64 integers. There must be
between 2 and 4 tables.

New in version 2.5.0.

Note

To enable JPEG support, you need to build and install the IJG JPEG library
before building the Python Imaging Library. See the distribution README for
details.

JPEG 2000

New in version 2.4.0.

PIL reads and writes JPEG 2000 files containing L, LA, RGB or
RGBA data. It can also read files containing YCbCr data, which it
converts on read into RGB or RGBA depending on whether or not there is
an alpha channel. PIL supports JPEG 2000 raw codestreams (.j2k files), as
well as boxed JPEG 2000 files (.j2p or .jpx files). PIL does not
support files whose components have different sampling frequencies.

When loading, if you set the mode on the image prior to the
load() method being invoked, you can ask PIL to
convert the image to either RGB or RGBA rather than choosing for
itself. It is also possible to set reduce to the number of resolutions to
discard (each one reduces the size of the resulting image by a factor of 2),
and layers to specify the number of quality layers to load.

The save() method supports the following options:

	offset

	The image offset, as a tuple of integers, e.g. (16, 16)

	tile_offset

	The tile offset, again as a 2-tuple of integers.

	tile_size

	The tile size as a 2-tuple. If not specified, or if set to None, the
image will be saved without tiling.

	quality_mode

	Either “rates” or “dB” depending on the units you want to use to
specify image quality.

	quality_layers

	A sequence of numbers, each of which represents either an approximate size
reduction (if quality mode is “rates”) or a signal to noise ratio value
in decibels. If not specified, defaults to a single layer of full quality.

	num_resolutions

	The number of different image resolutions to be stored (which corresponds
to the number of Discrete Wavelet Transform decompositions plus one).

	codeblock_size

	The code-block size as a 2-tuple. Minimum size is 4 x 4, maximum is 1024 x
1024, with the additional restriction that no code-block may have more
than 4096 coefficients (i.e. the product of the two numbers must be no
greater than 4096).

	precinct_size

	The precinct size as a 2-tuple. Must be a power of two along both axes,
and must be greater than the code-block size.

	irreversible

	If True, use the lossy Irreversible Color Transformation
followed by DWT 9-7. Defaults to False, which means to use the
Reversible Color Transformation with DWT 5-3.

	progression

	Controls the progression order; must be one of "LRCP", "RLCP",
"RPCL", "PCRL", "CPRL". The letters stand for Component,
Position, Resolution and Layer respectively and control the order of
encoding, the idea being that e.g. an image encoded using LRCP mode can
have its quality layers decoded as they arrive at the decoder, while one
encoded using RLCP mode will have increasing resolutions decoded as they
arrive, and so on.

	cinema_mode

	Set the encoder to produce output compliant with the digital cinema
specifications. The options here are "no" (the default),
"cinema2k-24" for 24fps 2K, "cinema2k-48" for 48fps 2K, and
"cinema4k-24" for 24fps 4K. Note that for compliant 2K files,
at least one of your image dimensions must match 2048 x 1080, while
for compliant 4K files, at least one of the dimensions must match
4096 x 2160.

Note

To enable JPEG 2000 support, you need to build and install the OpenJPEG
library, version 2.0.0 or higher, before building the Python Imaging
Library.

Windows users can install the OpenJPEG binaries available on the
OpenJPEG website, but must add them to their PATH in order to use PIL (if
you fail to do this, you will get errors about not being able to load the
_imaging DLL).

MSP

PIL identifies and reads MSP files from Windows 1 and 2. The library writes
uncompressed (Windows 1) versions of this format.

PCX

PIL reads and writes PCX files containing 1, L, P, or RGB data.

PNG

PIL identifies, reads, and writes PNG files containing 1, L, P,
RGB, or RGBA data. Interlaced files are supported as of v1.1.7.

The open() method sets the following
info properties, when appropriate:

	gamma

	Gamma, given as a floating point number.

	transparency

	Transparency color index. This key is omitted if the image is not a
transparent palette image.

Open also sets Image.text to a list of the values of the
tEXt, zTXt, and iTXt chunks of the PNG image. Individual
compressed chunks are limited to a decompressed size of
PngImagePlugin.MAX_TEXT_CHUNK, by default 1MB, to prevent
decompression bombs. Additionally, the total size of all of the text
chunks is limited to PngImagePlugin.MAX_TEXT_MEMORY, defaulting to
64MB.

The save() method supports the following options:

	optimize

	If present, instructs the PNG writer to make the output file as small as
possible. This includes extra processing in order to find optimal encoder
settings.

	transparency

	For P, L, and RGB images, this option controls what
color image to mark as transparent.

	dpi

	A tuple of two numbers corresponding to the desired dpi in each direction.

	pnginfo

	A PIL.PngImagePlugin.PngInfo instance containing text tags.

	bits (experimental)

	For P images, this option controls how many bits to store. If omitted,
the PNG writer uses 8 bits (256 colors).

	dictionary (experimental)

	Set the ZLIB encoder dictionary.

Note

To enable PNG support, you need to build and install the ZLIB compression
library before building the Python Imaging Library. See the distribution
README for details.

PPM

PIL reads and writes PBM, PGM and PPM files containing 1, L or RGB
data.

SPIDER

PIL reads and writes SPIDER image files of 32-bit floating point data
(“F;32F”).

PIL also reads SPIDER stack files containing sequences of SPIDER images. The
seek() [http://docs.python.org/2/library/stdtypes.html#file.seek] and tell() [http://docs.python.org/2/library/stdtypes.html#file.tell] methods are supported, and
random access is allowed.

The open() method sets the following attributes:

	format

	Set to SPIDER

	istack

	Set to 1 if the file is an image stack, else 0.

	nimages

	Set to the number of images in the stack.

A convenience method, convert2byte(), is provided for
converting floating point data to byte data (mode L):

im = Image.open('image001.spi').convert2byte()

Writing files in SPIDER format

The extension of SPIDER files may be any 3 alphanumeric characters. Therefore
the output format must be specified explicitly:

im.save('newimage.spi', format='SPIDER')

For more information about the SPIDER image processing package, see the
SPIDER homepage [http://spider.wadsworth.org/spider_doc/spider/docs/spider.html] at Wadsworth Center [http://www.wadsworth.org/].

TIFF

PIL reads and writes TIFF files. It can read both striped and tiled images,
pixel and plane interleaved multi-band images, and either uncompressed, or
Packbits, LZW, or JPEG compressed images.

If you have libtiff and its headers installed, PIL can read and write many more
kinds of compressed TIFF files. If not, PIL will always write uncompressed
files.

The open() method sets the following
info properties:

	compression

	Compression mode.

	dpi

	Image resolution as an (xdpi, ydpi) tuple, where applicable. You can use
the tag attribute to get more detailed
information about the image resolution.

New in version 1.1.5.

In addition, the tag attribute contains a
dictionary of decoded TIFF fields. Values are stored as either strings or
tuples. Note that only short, long and ASCII tags are correctly unpacked by
this release.

Saving Tiff Images

The save() method can take the following keyword arguments:

	tiffinfo

	A ImageFileDirectory object or dict
object containing tiff tags and values. The TIFF field type is
autodetected for Numeric and string values, any other types
require using an ImageFileDirectory
object and setting the type in
tagtype with
the appropriate numerical value from
TiffTags.TYPES.

New in version 2.3.0.

	compression

	
	A string containing the desired compression method for the

	file. (valid only with libtiff installed) Valid compression
methods are: [None, "tiff_ccitt", "group3", "group4",
"tiff_jpeg", "tiff_adobe_deflate", "tiff_thunderscan",
"tiff_deflate", "tiff_sgilog", "tiff_sgilog24", "tiff_raw_16"]

These arguments to set the tiff header fields are an alternative to using the general tags available through tiffinfo.

description

software

date_time

artist

	copyright

	Strings

	resolution_unit

	A string of “inch”, “centimeter” or “cm”

resolution

x_resolution

y_resolution

	dpi

	Either a Float, Integer, or 2 tuple of (numerator,
denominator). Resolution implies an equal x and y resolution, dpi
also implies a unit of inches.

WebP

PIL reads and writes WebP files. The specifics of PIL’s capabilities with this
format are currently undocumented.

The save() method supports the following options:

	lossless

	If present, instructs the WEBP writer to use lossless
compression.

	quality

	Integer, 1-100, Defaults to 80. Sets the quality level for
lossy compression.

	icc_procfile

	The ICC Profile to include in the saved file. Only supported if
the system webp library was built with webpmux support.

	exif

	The exif data to include in the saved file. Only supported if
the system webp library was built with webpmux support.

XBM

PIL reads and writes X bitmap files (mode 1).

XV Thumbnails

PIL can read XV thumbnail files.

Read-only formats

CUR

CUR is used to store cursors on Windows. The CUR decoder reads the largest
available cursor. Animated cursors are not supported.

DCX

DCX is a container file format for PCX files, defined by Intel. The DCX format
is commonly used in fax applications. The DCX decoder can read files containing
1, L, P, or RGB data.

When the file is opened, only the first image is read. You can use
seek() [http://docs.python.org/2/library/stdtypes.html#file.seek] or ImageSequence to read other images.

FLI, FLC

PIL reads Autodesk FLI and FLC animations.

The open() method sets the following
info properties:

	duration

	The delay (in milliseconds) between each frame.

FPX

PIL reads Kodak FlashPix files. In the current version, only the highest
resolution image is read from the file, and the viewing transform is not taken
into account.

Note

To enable full FlashPix support, you need to build and install the IJG JPEG
library before building the Python Imaging Library. See the distribution
README for details.

GBR

The GBR decoder reads GIMP brush files.

The open() method sets the following
info properties:

	description

	The brush name.

GD

PIL reads uncompressed GD files. Note that this file format cannot be
automatically identified, so you must use PIL.GdImageFile.open() to
read such a file.

The open() method sets the following
info properties:

	transparency

	Transparency color index. This key is omitted if the image is not
transparent.

ICO

ICO is used to store icons on Windows. The largest available icon is read.

The save() method supports the following options:

	sizes

	A list of sizes including in this ico file; these are a 2-tuple,
(width, height); Default to [(16, 16), (24, 24), (32, 32), (48, 48),
(64, 64), (128, 128), (255, 255)]. Any size is bigger then the original
size or 255 will be ignored.

ICNS

PIL reads Mac OS X .icns files. By default, the largest available icon is
read, though you can override this by setting the size
property before calling load(). The
open() method sets the following
info property:

	sizes

	A list of supported sizes found in this icon file; these are a
3-tuple, (width, height, scale), where scale is 2 for a retina
icon and 1 for a standard icon. You are permitted to use this 3-tuple
format for the size property if you set it
before calling load(); after loading, the size
will be reset to a 2-tuple containing pixel dimensions (so, e.g. if you
ask for (512, 512, 2), the final value of
size will be (1024, 1024)).

IMT

PIL reads Image Tools images containing L data.

IPTC/NAA

PIL provides limited read support for IPTC/NAA newsphoto files.

MCIDAS

PIL identifies and reads 8-bit McIdas area files.

MIC (read only)

PIL identifies and reads Microsoft Image Composer (MIC) files. When opened, the
first sprite in the file is loaded. You can use seek() [http://docs.python.org/2/library/stdtypes.html#file.seek] and
tell() [http://docs.python.org/2/library/stdtypes.html#file.tell] to read other sprites from the file.

MPO

Pillow identifies and reads Multi Picture Object (MPO) files, loading the primary
image when first opened. The seek() [http://docs.python.org/2/library/stdtypes.html#file.seek] and tell() [http://docs.python.org/2/library/stdtypes.html#file.tell]
methods may be used to read other pictures from the file. The pictures are
zero-indexed and random access is supported.

MIC (read only)

Pillow identifies and reads Microsoft Image Composer (MIC) files. When opened, the
first sprite in the file is loaded. You can use seek() [http://docs.python.org/2/library/stdtypes.html#file.seek] and
tell() [http://docs.python.org/2/library/stdtypes.html#file.tell] to read other sprites from the file.

PCD

PIL reads PhotoCD files containing RGB data. By default, the 768x512
resolution is read. You can use the draft() method to
read the lower resolution versions instead, thus effectively resizing the image
to 384x256 or 192x128. Higher resolutions cannot be read by the Python Imaging
Library.

PSD

PIL identifies and reads PSD files written by Adobe Photoshop 2.5 and 3.0.

SGI

PIL reads uncompressed L, RGB, and RGBA files.

TGA

PIL reads 24- and 32-bit uncompressed and run-length encoded TGA files.

WAL

New in version 1.1.4.

PIL reads Quake2 WAL texture files.

Note that this file format cannot be automatically identified, so you must use
the open function in the WalImageFile module to read files in
this format.

By default, a Quake2 standard palette is attached to the texture. To override
the palette, use the putpalette method.

XPM

PIL reads X pixmap files (mode P) with 256 colors or less.

The open() method sets the following
info properties:

	transparency

	Transparency color index. This key is omitted if the image is not
transparent.

Write-only formats

PALM

PIL provides write-only support for PALM pixmap files.

The format code is Palm, the extension is .palm.

PDF

PIL can write PDF (Acrobat) images. Such images are written as binary PDF 1.1
files, using either JPEG or HEX encoding depending on the image mode (and
whether JPEG support is available or not).

PIXAR (read only)

PIL provides limited support for PIXAR raster files. The library can identify
and read “dumped” RGB files.

The format code is PIXAR.

Identify-only formats

BUFR

New in version 1.1.3.

PIL provides a stub driver for BUFR files.

To add read or write support to your application, use
PIL.BufrStubImagePlugin.register_handler().

FITS

New in version 1.1.5.

PIL provides a stub driver for FITS files.

To add read or write support to your application, use
PIL.FitsStubImagePlugin.register_handler().

GRIB

New in version 1.1.5.

PIL provides a stub driver for GRIB files.

The driver requires the file to start with a GRIB header. If you have files
with embedded GRIB data, or files with multiple GRIB fields, your application
has to seek to the header before passing the file handle to PIL.

To add read or write support to your application, use
PIL.GribStubImagePlugin.register_handler().

HDF5

New in version 1.1.5.

PIL provides a stub driver for HDF5 files.

To add read or write support to your application, use
PIL.Hdf5StubImagePlugin.register_handler().

MPEG

PIL identifies MPEG files.

WMF

PIL can identify placable WMF files.

In PIL 1.1.4 and earlier, the WMF driver provides some limited rendering
support, but not enough to be useful for any real application.

In PIL 1.1.5 and later, the WMF driver is a stub driver. To add WMF read or
write support to your application, use
PIL.WmfImagePlugin.register_handler() to register a WMF handler.

from PIL import Image
from PIL import WmfImagePlugin

class WmfHandler:
 def open(self, im):
 ...
 def load(self, im):
 ...
 return image
 def save(self, im, fp, filename):
 ...

wmf_handler = WmfHandler()

WmfImagePlugin.register_handler(wmf_handler)

im = Image.open("sample.wmf")

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Appendices

Writing your own file decoder

The Python Imaging Library uses a plug-in model which allows you to
add your own decoders to the library, without any changes to the
library itself. Such plug-ins usually have names like
XxxImagePlugin.py, where Xxx is a unique format name
(usually an abbreviation).

Warning

Pillow >= 2.1.0 no longer automatically imports any file in the Python path with a name ending in ImagePlugin.py. You will need to import your decoder manually.

A decoder plug-in should contain a decoder class, based on the
PIL.ImageFile.ImageFile base class. This class should provide an
_open() method, which reads the file header and sets up at least the
mode and size
attributes. To be able to load the file, the method must also create a list of
tile descriptors. The class must be explicitly registered, via a
call to the Image module.

For performance reasons, it is important that the _open() method
quickly rejects files that do not have the appropriate contents.

Example

The following plug-in supports a simple format, which has a 128-byte header
consisting of the words “SPAM” followed by the width, height, and pixel size in
bits. The header fields are separated by spaces. The image data follows
directly after the header, and can be either bi-level, greyscale, or 24-bit
true color.

SpamImagePlugin.py:

from PIL import Image, ImageFile
import string

class SpamImageFile(ImageFile.ImageFile):

 format = "SPAM"
 format_description = "Spam raster image"

 def _open(self):

 # check header
 header = self.fp.read(128)
 if header[:4] != "SPAM":
 raise SyntaxError, "not a SPAM file"

 header = string.split(header)

 # size in pixels (width, height)
 self.size = int(header[1]), int(header[2])

 # mode setting
 bits = int(header[3])
 if bits == 1:
 self.mode = "1"
 elif bits == 8:
 self.mode = "L"
 elif bits == 24:
 self.mode = "RGB"
 else:
 raise SyntaxError, "unknown number of bits"

 # data descriptor
 self.tile = [
 ("raw", (0, 0) + self.size, 128, (self.mode, 0, 1))
]

Image.register_open("SPAM", SpamImageFile)

Image.register_extension("SPAM", ".spam")
Image.register_extension("SPAM", ".spa") # dos version

The format handler must always set the size and
mode attributes. If these are not set, the file
cannot be opened. To simplify the decoder, the calling code considers
exceptions like SyntaxError, KeyError, and
IndexError, as a failure to identify the file.

Note that the decoder must be explicitly registered using
PIL.Image.register_open(). Although not required, it is also a good
idea to register any extensions used by this format.

The tile attribute

To be able to read the file as well as just identifying it, the tile
attribute must also be set. This attribute consists of a list of tile
descriptors, where each descriptor specifies how data should be loaded to a
given region in the image. In most cases, only a single descriptor is used,
covering the full image.

The tile descriptor is a 4-tuple with the following contents:

(decoder, region, offset, parameters)

The fields are used as follows:

	decoder

	Specifies which decoder to use. The raw decoder used here supports
uncompressed data, in a variety of pixel formats. For more information on
this decoder, see the description below.

	region

	A 4-tuple specifying where to store data in the image.

	offset

	Byte offset from the beginning of the file to image data.

	parameters

	Parameters to the decoder. The contents of this field depends on the
decoder specified by the first field in the tile descriptor tuple. If the
decoder doesn’t need any parameters, use None for this field.

Note that the tile attribute contains a list of tile descriptors,
not just a single descriptor.

The raw decoder

The raw decoder is used to read uncompressed data from an image file. It
can be used with most uncompressed file formats, such as PPM, BMP, uncompressed
TIFF, and many others. To use the raw decoder with the
PIL.Image.fromstring() function, use the following syntax:

image = Image.fromstring(
 mode, size, data, "raw",
 raw mode, stride, orientation
)

When used in a tile descriptor, the parameter field should look like:

(raw mode, stride, orientation)

The fields are used as follows:

	raw mode

	The pixel layout used in the file, and is used to properly convert data to
PIL’s internal layout. For a summary of the available formats, see the
table below.

	stride

	The distance in bytes between two consecutive lines in the image. If 0, the
image is assumed to be packed (no padding between lines). If omitted, the
stride defaults to 0.

orientation

Whether the first line in the image is the top line on the screen (1), or
the bottom line (-1). If omitted, the orientation defaults to 1.

The raw mode field is used to determine how the data should be unpacked to
match PIL’s internal pixel layout. PIL supports a large set of raw modes; for a
complete list, see the table in the Unpack.c module. The following
table describes some commonly used raw modes:

	mode
	description

	1
	1-bit bilevel, stored with the leftmost pixel in the most
significant bit. 0 means black, 1 means white.

	1;I
	1-bit inverted bilevel, stored with the leftmost pixel in the
most significant bit. 0 means white, 1 means black.

	1;R
	1-bit reversed bilevel, stored with the leftmost pixel in the
least significant bit. 0 means black, 1 means white.

	L
	8-bit greyscale. 0 means black, 255 means white.

	L;I
	8-bit inverted greyscale. 0 means white, 255 means black.

	P
	8-bit palette-mapped image.

	RGB
	24-bit true colour, stored as (red, green, blue).

	BGR
	24-bit true colour, stored as (blue, green, red).

	RGBX
	24-bit true colour, stored as (blue, green, red, pad).

	RGB;L
	24-bit true colour, line interleaved (first all red pixels, the
all green pixels, finally all blue pixels).

Note that for the most common cases, the raw mode is simply the same as the mode.

The Python Imaging Library supports many other decoders, including JPEG, PNG,
and PackBits. For details, see the decode.c source file, and the
standard plug-in implementations provided with the library.

Decoding floating point data

PIL provides some special mechanisms to allow you to load a wide variety of
formats into a mode F (floating point) image memory.

You can use the raw decoder to read images where data is packed in any
standard machine data type, using one of the following raw modes:

	mode
	description

	F
	32-bit native floating point.

	F;8
	8-bit unsigned integer.

	F;8S
	8-bit signed integer.

	F;16
	16-bit little endian unsigned integer.

	F;16S
	16-bit little endian signed integer.

	F;16B
	16-bit big endian unsigned integer.

	F;16BS
	16-bit big endian signed integer.

	F;16N
	16-bit native unsigned integer.

	F;16NS
	16-bit native signed integer.

	F;32
	32-bit little endian unsigned integer.

	F;32S
	32-bit little endian signed integer.

	F;32B
	32-bit big endian unsigned integer.

	F;32BS
	32-bit big endian signed integer.

	F;32N
	32-bit native unsigned integer.

	F;32NS
	32-bit native signed integer.

	F;32F
	32-bit little endian floating point.

	F;32BF
	32-bit big endian floating point.

	F;32NF
	32-bit native floating point.

	F;64F
	64-bit little endian floating point.

	F;64BF
	64-bit big endian floating point.

	F;64NF
	64-bit native floating point.

The bit decoder

If the raw decoder cannot handle your format, PIL also provides a special “bit”
decoder that can be used to read various packed formats into a floating point
image memory.

To use the bit decoder with the fromstring function, use the following syntax:

image = fromstring(
 mode, size, data, "bit",
 bits, pad, fill, sign, orientation
)

When used in a tile descriptor, the parameter field should look like:

(bits, pad, fill, sign, orientation)

The fields are used as follows:

	bits

	Number of bits per pixel (2-32). No default.

	pad

	Padding between lines, in bits. This is either 0 if there is no padding, or
8 if lines are padded to full bytes. If omitted, the pad value defaults to
8.

	fill

	Controls how data are added to, and stored from, the decoder bit buffer.

	fill=0

	Add bytes to the LSB end of the decoder buffer; store pixels from the MSB
end.

	fill=1

	Add bytes to the MSB end of the decoder buffer; store pixels from the MSB
end.

	fill=2

	Add bytes to the LSB end of the decoder buffer; store pixels from the LSB
end.

	fill=3

	Add bytes to the MSB end of the decoder buffer; store pixels from the LSB
end.

If omitted, the fill order defaults to 0.

	sign

	If non-zero, bit fields are sign extended. If zero or omitted, bit fields
are unsigned.

	orientation

	Whether the first line in the image is the top line on the screen (1), or
the bottom line (-1). If omitted, the orientation defaults to 1.

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

Release Notes

	Pillow 2.7.0
	Png text chunk size limits

	Image resizing filters

	Image transposition

	Gaussian blur and unsharp mask

	TFF Parameter Changes

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Release Notes

Pillow 2.7.0

Png text chunk size limits

To prevent potential denial of service attacks using compressed text
chunks, there are now limits to the decompressed size of text chunks
decoded from PNG images. If the limits are exceeded when opening a PNG
image a ValueError will be raised.

Individual text chunks are limited to
PIL.PngImagePlugin.MAX_TEXT_CHUNK, set to 1MB by
default. The total decompressed size of all text chunks is limited to
PIL.PngImagePlugin.MAX_TEXT_MEMORY, which defaults to
64MB. These values can be changed prior to opening PNG images if you
know that there are large text blocks that are desired.

Image resizing filters

Image resizing methods resize() and
thumbnail() take a resample argument, which tells
which filter should be used for resampling. Possible values are:
PIL.Image.NEAREST, PIL.Image.BILINEAR,
PIL.Image.BICUBIC and PIL.Image.ANTIALIAS.
Almost all of them were changed in this version.

Bicubic and bilinear downscaling

From the beginning BILINEAR and
BICUBIC filters were based on affine transformations
and used a fixed number of pixels from the source image for every destination
pixel (2x2 pixels for BILINEAR and 4x4 for
BICUBIC). This gave an unsatisfactory result for
downscaling. At the same time, a high quality convolutions-based algorithm with
flexible kernel was used for ANTIALIAS filter.

Starting from Pillow 2.7.0, a high quality convolutions-based algorithm is used
for all of these three filters.

If you have previously used any tricks to maintain quality when downscaling with
BILINEAR and BICUBIC filters
(for example, reducing within several steps), they are unnecessary now.

Antialias renamed to Lanczos

A new PIL.Image.LANCZOS constant was added instead of
ANTIALIAS.

When ANTIALIAS was initially added, it was the only
high-quality filter based on convolutions. It’s name was supposed to reflect
this. Starting from Pillow 2.7.0 all resize method are based on convolutions.
All of them are antialias from now on. And the real name of the
ANTIALIAS filter is Lanczos filter.

The ANTIALIAS constant is left for backward compatibility
and is an alias for LANCZOS.

Lanczos upscaling quality

The image upscaling quality with LANCZOS filter was
almost the same as BILINEAR due to bug. This has been fixed.

Bicubic upscaling quality

The BICUBIC filter for affine transformations produced
sharp, slightly pixelated image for upscaling. Bicubic for convolutions is
more soft.

Resize performance

In most cases, convolution is more a expensive algorithm for downscaling
because it takes into account all the pixels of source image. Therefore
BILINEAR and BICUBIC filters’
performance can be lower than before. On the other hand the quality of
BILINEAR and BICUBIC was close to
NEAREST. So if such quality is suitable for your tasks
you can switch to NEAREST filter for downscaling,
which will give a huge improvement in performance.

At the same time performance of convolution resampling for downscaling has been
improved by around a factor of two compared to the previous version.
The upscaling performance of the LANCZOS filter has
remained the same. For BILINEAR filter it has improved by
1.5 times and for BICUBIC by four times.

Default filter for thumbnails

In Pillow 2.5 the default filter for thumbnail() was
changed from NEAREST to ANTIALIAS.
Antialias was chosen because all the other filters gave poor quality for
reduction. Starting from Pillow 2.7.0, ANTIALIAS has been
replaced with BICUBIC, because it’s faster and
ANTIALIAS doesn’t give any advantages after
downscaling with libjpeg, which uses supersampling internally, not convolutions.

Image transposition

A new method PIL.Image.TRANSPOSE has been added for the
transpose() operation in addition to
FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM,
ROTATE_90, ROTATE_180,
ROTATE_270. TRANSPOSE is an algebra
transpose, with an image reflected across its main diagonal.

The speed of ROTATE_90, ROTATE_270
and TRANSPOSE has been significantly improved for large
images which don’t fit in the processor cache.

Gaussian blur and unsharp mask

The GaussianBlur() implementation has been replaced
with a sequential application of box filters. The new implementation is based on
“Theoretical foundations of Gaussian convolution by extended box filtering” from
the Mathematical Image Analysis Group. As UnsharpMask()
implementations use Gaussian blur internally, all changes from this chapter
are also applicable to it.

Blur radius

There was an error in the previous version of Pillow, where blur radius (the
standard deviation of Gaussian) actually meant blur diameter. For example, to
blur an image with actual radius 5 you were forced to use value 10. This has
been fixed. Now the meaning of the radius is the same as in other software.

If you used a Gaussian blur with some radius value, you need to divide this
value by two.

Blur performance

Box filter computation time is constant relative to the radius and depends
on source image size only. Because the new Gaussian blur implementation
is based on box filter, its computation time also doesn’t depends on the blur
radius.

For example, previously, if the execution time for a given test image was 1
second for radius 1, 3.6 seconds for radius 10 and 17 seconds for 50, now blur
with any radius on same image is executed for 0.2 seconds.

Blur quality

The previous implementation takes into account only source pixels within
2 * standard deviation radius for every destination pixel. This was not enough,
so the quality was worse compared to other Gaussian blur software.

The new implementation does not have this drawback.

TFF Parameter Changes

Several kwarg parameters for saving TIFF images were previously
specified as strings with included spaces (e.g. ‘x resolution’). This
was difficult to use as kwargs without constructing and passing a
dictionary. These parameters now use the underscore character instead
of space. (e.g. ‘x_resolution’)

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Home

Original PIL README

What follows is the original PIL 1.1.7 README file contents.

The Python Imaging Library
Id

Release 1.1.7 (November 15, 2009)

==
The Python Imaging Library 1.1.7
==

Contents

+ Introduction
+ Support Options
 - Commercial support
 - Free support
+ Software License
+ Build instructions (all platforms)
 - Additional notes for Mac OS X
 - Additional notes for Windows

--
Introduction
--

The Python Imaging Library (PIL) adds image processing capabilities
to your Python environment. This library provides extensive file
format support, an efficient internal representation, and powerful
image processing capabilities.

This source kit has been built and tested with Python 2.0 and newer,
on Windows, Mac OS X, and major Unix platforms. Large parts of the
library also work on 1.5.2 and 1.6.

The main distribution site for this software is:

 http://www.pythonware.com/products/pil/

That site also contains information about free and commercial support
options, PIL add-ons, answers to frequently asked questions, and more.

Development versions (alphas, betas) are available here:

 http://effbot.org/downloads/

The PIL handbook is not included in this distribution; to get the
latest version, check:

 http://www.pythonware.com/library/
 http://effbot.org/books/imagingbook/ (drafts)

For installation and licensing details, see below.

--
Support Options
--

+ Commercial Support

Secret Labs (PythonWare) offers support contracts for companies using
the Python Imaging Library in commercial applications, and in mission-
critical environments. The support contract includes technical support,
bug fixes, extensions to the PIL library, sample applications, and more.

For the full story, check:

 http://www.pythonware.com/products/pil/support.htm

+ Free Support

For support and general questions on the Python Imaging Library, send
e-mail to the Image SIG mailing list:

 image-sig@python.org

You can join the Image SIG by sending a mail to:

 image-sig-request@python.org

Put "subscribe" in the message body to automatically subscribe to the
list, or "help" to get additional information. Alternatively, you can
send your questions to the Python mailing list, python-list@python.org,
or post them to the newsgroup comp.lang.python. DO NOT SEND SUPPORT
QUESTIONS TO PYTHONWARE ADDRESSES.

--
Software License
--

The Python Imaging Library is

Copyright (c) 1997-2009 by Secret Labs AB
Copyright (c) 1995-2009 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its
associated documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appears in all
copies, and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of Secret Labs
AB or the author not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

--
Build instructions (all platforms)
--

For a list of changes in this release, see the CHANGES document.

0. If you're in a hurry, try this:

 $ tar xvfz Imaging-1.1.7.tar.gz
 $ cd Imaging-1.1.7
 $ python setup.py install

 If you prefer to know what you're doing, read on.

1. Prerequisites.

 If you need any of the features described below, make sure you
 have the necessary libraries before building PIL.

 feature library

 JPEG support libjpeg (6a or 6b)

 http://www.ijg.org
 http://www.ijg.org/files/jpegsrc.v6b.tar.gz
 ftp://ftp.uu.net/graphics/jpeg/

 PNG support zlib (1.2.3 or later is recommended)

 http://www.gzip.org/zlib/

 OpenType/TrueType freetype2 (2.3.9 or later is recommended)
 support
 http://www.freetype.org
 http://freetype.sourceforge.net

 CMS support littleCMS (1.1.5 or later is recommended)
 support
 http://www.littlecms.com/

 If you have a recent Linux version, the libraries provided with the
 operating system usually work just fine. If some library is
 missing, installing a prebuilt version (jpeg-devel, zlib-devel,
 etc) is usually easier than building from source. For example, for
 Ubuntu 9.10 (karmic), you can install the following libraries:

 sudo apt-get install libjpeg62-dev
 sudo apt-get install zlib1g-dev
 sudo apt-get install libfreetype6-dev
 sudo apt-get install liblcms1-dev

 If you're using Mac OS X, you can use the 'fink' tool to install
 missing libraries (also see the Mac OS X section below).

 Similar tools are available for many other platforms.

2. To build under Python 1.5.2, you need to install the stand-alone
 version of the distutils library:

 http://www.python.org/sigs/distutils-sig/download.html

 You can fetch distutils 1.0.2 from the Python source repository:

 svn export http://svn.python.org/projects/python/tags/Distutils-1_0_2/Lib/distutils/

 For newer releases, the distutils library is included in the
 Python standard library.

 NOTE: Version 1.1.7 is not fully compatible with 1.5.2. Some
 more recent additions to the library may not work, but the core
 functionality is available.

3. If you didn't build Python from sources, make sure you have
 Python's build support files on your machine. If you've down-
 loaded a prebuilt package (e.g. a Linux RPM), you probably
 need additional developer packages. Look for packages named
 "python-dev", "python-devel", or similar. For example, for
 Ubuntu 9.10 (karmic), use the following command:

 sudo apt-get install python-dev

4. When you have everything you need, unpack the PIL distribution
 (the file Imaging-1.1.7.tar.gz) in a suitable work directory:

 $ cd MyExtensions # example
 $ gunzip Imaging-1.1.7.tar.gz
 $ tar xvf Imaging-1.1.7.tar

5. Build the library. We recommend that you do an in-place build,
 and run the self test before installing.

 $ cd Imaging-1.1.7
 $ python setup.py build_ext -i
 $ python selftest.py

 During the build process, the setup.py will display a summary
 report that lists what external components it found. The self-
 test will display a similar report, with what external components
 the tests found in the actual build files:

 --
 PIL 1.1.7 SETUP SUMMARY
 --
 *** TKINTER support not available (Tcl/Tk 8.5 libraries needed)
 --- JPEG support available
 --- ZLIB (PNG/ZIP) support available
 --- FREETYPE support available
 --

 Make sure that the optional components you need are included.

 If the build script won't find a given component, you can edit the
 setup.py file and set the appropriate ROOT variable. For details,
 see instructions in the file.

 If the build script finds the component, but the tests cannot
 identify it, try rebuilding *all* modules:

 $ python setup.py clean
 $ python setup.py build_ext -i

6. If the setup.py and selftest.py commands finish without any
 errors, you're ready to install the library:

 $ python setup.py install

 (depending on how Python has been installed on your machine,
 you might have to log in as a superuser to run the 'install'
 command, or use the 'sudo' command to run 'install'.)

--
Additional notes for Mac OS X
--

On Mac OS X you will usually install additional software such as
libjpeg or freetype with the "fink" tool, and then it ends up in
"/sw". If you have installed the libraries elsewhere, you may have
to tweak the "setup.py" file before building.

--
Additional notes for Windows
--

On Windows, you need to tweak the ROOT settings in the "setup.py"
file, to make it find the external libraries. See comments in the
file for details.

Make sure to build PIL and the external libraries with the same
runtime linking options as was used for the Python interpreter
(usually /MD, under Visual Studio).

Note that most Python distributions for Windows include libraries
compiled for Microsoft Visual Studio. You can get the free Express
edition of Visual Studio from:

 http://www.microsoft.com/Express/

To build extensions using other tool chains, see the "Using
non-Microsoft compilers on Windows" section in the distutils handbook:

 http://www.python.org/doc/current/inst/non-ms-compilers.html

For additional information on how to build extensions using the
popular MinGW compiler, see:

 http://mingw.org (compiler)
 http://sebsauvage.net/python/mingw.html (build instructions)
 http://sourceforge.net/projects/gnuwin32 (prebuilt libraries)

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Home

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 PIL	

 	
 	
 PIL._binary	

 	
 	
 PIL.BdfFontFile	

 	
 	
 PIL.ContainerIO	

 	
 	
 PIL.ExifTags	

 	
 	
 PIL.FontFile	

 	
 	
 PIL.GdImageFile	

 	
 	
 PIL.GimpGradientFile	

 	
 	
 PIL.GimpPaletteFile	

 	
 	
 PIL.Image	

 	
 	
 PIL.ImageChops	

 	
 	
 PIL.ImageCms	

 	
 	
 PIL.ImageColor	

 	
 	
 PIL.ImageDraw	

 	
 	
 PIL.ImageDraw2	

 	
 	
 PIL.ImageEnhance	

 	
 	
 PIL.ImageFile	

 	
 	
 PIL.ImageFileIO	

 	
 	
 PIL.ImageFilter	

 	
 	
 PIL.ImageFont	

 	
 	
 PIL.ImageGrab	

 	
 	
 PIL.ImageMath	

 	
 	
 PIL.ImageMorph	

 	
 	
 PIL.ImageOps	

 	
 	
 PIL.ImagePalette	

 	
 	
 PIL.ImagePath	

 	
 	
 PIL.ImageQt	

 	
 	
 PIL.ImageSequence	

 	
 	
 PIL.ImageShow	

 	
 	
 PIL.ImageStat	

 	
 	
 PIL.ImageTk	

 	
 	
 PIL.ImageTransform	

 	
 	
 PIL.ImageWin	

 	
 	
 PIL.JpegPresets	

 	
 	
 PIL.OleFileIO	

 	
 	
 PIL.PaletteFile	

 	
 	
 PIL.PcfFontFile	

 	
 	
 PIL.PSDraw	

 	
 	
 PIL.PyAccess	

 	
 	
 PIL.TarIO	

 	
 	
 PIL.TiffTags	

 	
 	
 PIL.WalImageFile	

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Home

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	

 	__new__() (PIL.PcfFontFile.iTXt method)

 	

 	_Enhance (class in PIL.ImageEnhance)

A

 	

 	abs() (built-in function)

 	add() (in module PIL.ImageChops)

 	

 	(PIL.PngImagePlugin.PngInfo method)

 	add_itxt() (PIL.PngImagePlugin.PngInfo method)

 	add_modulo() (in module PIL.ImageChops)

 	add_text() (PIL.PngImagePlugin.PngInfo method)

 	

 	AffineTransform (class in PIL.ImageTransform)

 	alpha_composite() (in module PIL.Image)

 	arc() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	

 	(PIL.ImageDraw2.Draw method)

 	autocontrast() (in module PIL.ImageOps)

B

 	

 	bdf_char() (in module PIL.BdfFontFile)

 	BdfFontFile (class in PIL.BdfFontFile)

 	begin_document() (PIL.PSDraw.PSDraw method)

 	bitmap (PIL.FontFile.FontFile attribute)

 	bitmap() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	

 	BitmapImage (class in PIL.ImageTk)

 	blend() (in module PIL.Image)

 	

 	(in module PIL.ImageChops)

 	Brightness (class in PIL.ImageEnhance)

 	Brush (class in PIL.ImageDraw2)

C

 	

 	chord() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	

 	(PIL.ImageDraw2.Draw method)

 	close() (PIL.Image.Image method)

 	

 	(PIL.ImageFile.Parser method)

 	Color (class in PIL.ImageEnhance)

 	colorize() (in module PIL.ImageOps)

 	compact() (PIL.ImagePath.PIL.ImagePath.Path method)

 	compile() (PIL.FontFile.FontFile method)

 	composite() (in module PIL.Image)

 	

 	(in module PIL.ImageChops)

 	constant() (in module PIL.ImageChops)

 	

 	ContainerIO (class in PIL.ContainerIO)

 	Contrast (class in PIL.ImageEnhance)

 	convert() (built-in function)

 	

 	(PIL.Image.Image method)

 	copy() (PIL.Image.Image method)

 	count (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	crop() (in module PIL.ImageOps)

 	

 	(PIL.Image.Image method)

 	curved() (in module PIL.GimpGradientFile)

D

 	

 	darker() (in module PIL.ImageChops)

 	deform() (in module PIL.ImageOps)

 	Dib (class in PIL.ImageWin)

 	difference() (in module PIL.ImageChops)

 	DisplayViewer (class in PIL.ImageShow)

 	

 	draft() (PIL.Image.Image method)

 	Draw (class in PIL.ImageDraw2)

 	draw() (PIL.ImageWin.Dib method)

 	duplicate() (in module PIL.ImageChops)

E

 	

 	ellipse() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	

 	(PIL.ImageDraw2.Draw method)

 	end_document() (PIL.PSDraw.PSDraw method)

 	enhance() (PIL.ImageEnhance._Enhance method)

 	equalize() (in module PIL.ImageOps)

 	eval() (in module PIL.Image)

 	

 	(in module PIL.ImageMath)

 	

 	expand() (in module PIL.ImageOps)

 	expose() (PIL.ImageWin.Dib method)

 	ExtentTransform (class in PIL.ImageTransform)

 	extrema (PIL.ImageStat.PIL.ImageStat.Stat attribute)

F

 	

 	feed() (PIL.ImageFile.Parser method)

 	filter() (PIL.Image.Image method)

 	fit() (in module PIL.ImageOps)

 	flip() (in module PIL.ImageOps)

 	float() (built-in function)

 	flush() (PIL.ImageDraw2.Draw method)

 	Font (class in PIL.ImageDraw2)

 	

 	FontFile (class in PIL.FontFile)

 	format (in module PIL.Image)

 	

 	(PIL.GdImageFile.GdImageFile attribute)

 	(PIL.ImageShow.Viewer attribute)

 	format_description (PIL.GdImageFile.GdImageFile attribute)

 	fromarray() (in module PIL.Image)

 	frombuffer() (in module PIL.Image)

 	frombytes() (in module PIL.Image)

 	

 	(PIL.ImageWin.Dib method)

 	fromstring() (in module PIL.Image)

 	

 	(PIL.Image.Image method)

G

 	

 	GaussianBlur (class in PIL.ImageFilter)

 	GdImageFile (class in PIL.GdImageFile)

 	get_command() (PIL.ImageShow.Viewer method)

 	get_command_ex() (PIL.ImageShow.DisplayViewer method)

 	

 	(PIL.ImageShow.XVViewer method)

 	get_format() (PIL.ImageShow.Viewer method)

 	getbands() (PIL.Image.Image method)

 	getbbox() (PIL.Image.Image method)

 	

 	(PIL.ImagePath.PIL.ImagePath.Path method)

 	getcolor() (in module PIL.ImageColor)

 	

 	(PIL.ImagePalette.ImagePalette method)

 	getcolors() (PIL.Image.Image method)

 	getdata() (PIL.Image.Image method)

 	

 	(PIL.ImagePalette.ImagePalette method)

 	(PIL.ImageTransform.Transform method)

 	getextrema() (PIL.Image.Image method)

 	

 	getmask() (PIL.ImageFont.PIL.ImageFont.ImageFont method)

 	getpalette() (PIL.GimpGradientFile.GradientFile method)

 	

 	(PIL.GimpPaletteFile.GimpPaletteFile method)

 	(PIL.Image.Image method)

 	(PIL.PaletteFile.PaletteFile method)

 	getpixel() (PIL.Image.Image method)

 	getrgb() (in module PIL.ImageColor)

 	getsize() (PIL.ImageFont.PIL.ImageFont.ImageFont method)

 	GimpGradientFile (class in PIL.GimpGradientFile)

 	GimpPaletteFile (class in PIL.GimpPaletteFile)

 	gradient (PIL.GimpGradientFile.GradientFile attribute)

 	GradientFile (class in PIL.GimpGradientFile)

 	grayscale() (in module PIL.ImageOps)

H

 	

 	HDC (class in PIL.ImageWin)

 	height() (PIL.ImageTk.BitmapImage method)

 	

 	(PIL.ImageTk.PhotoImage method)

 	

 	histogram() (PIL.Image.Image method)

 	HWND (class in PIL.ImageWin)

I

 	

 	i16be() (in module PIL._binary)

 	i16le() (in module PIL._binary)

 	i32be() (in module PIL._binary)

 	i32le() (in module PIL._binary)

 	i8() (in module PIL._binary)

 	Image (class in PIL.Image)

 	image() (PIL.PSDraw.PSDraw method)

 	ImageFileIO (class in PIL.ImageFileIO)

 	

 	ImagePalette (class in PIL.ImagePalette)

 	ImageQt.ImageQt (class in PIL.ImageQt)

 	info (in module PIL.Image)

 	int() (built-in function)

 	invert() (in module PIL.ImageChops)

 	

 	(in module PIL.ImageOps)

 	isatty() (PIL.ContainerIO.ContainerIO method)

 	Iterator (class in PIL.ImageSequence)

 	iTXt (class in PIL.PngImagePlugin)

K

 	

 	Kernel (class in PIL.ImageFilter)

L

 	

 	lighter() (in module PIL.ImageChops)

 	line() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	

 	(PIL.ImageDraw2.Draw method)

 	(PIL.PSDraw.PSDraw method)

 	linear() (in module PIL.GimpGradientFile)

 	load() (in module PIL.ImageFont)

 	

 	(PIL.Image.Image method)

 	

 	load_default() (in module PIL.ImageFont)

 	load_path() (in module PIL.ImageFont)

 	logical_and() (in module PIL.ImageChops)

 	logical_or() (in module PIL.ImageChops)

M

 	

 	map() (PIL.ImagePath.PIL.ImagePath.Path method)

 	max() (built-in function)

 	MaxFilter (class in PIL.ImageFilter)

 	mean (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	median (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	MedianFilter (class in PIL.ImageFilter)

 	merge() (in module PIL.Image)

 	MeshTransform (class in PIL.ImageTransform)

 	

 	method (PIL.ImageTransform.AffineTransform attribute)

 	

 	(PIL.ImageTransform.ExtentTransform attribute)

 	(PIL.ImageTransform.MeshTransform attribute)

 	(PIL.ImageTransform.QuadTransform attribute)

 	min() (built-in function)

 	MinFilter (class in PIL.ImageFilter)

 	mirror() (in module PIL.ImageOps)

 	mode (in module PIL.Image)

 	ModeFilter (class in PIL.ImageFilter)

 	multiply() (in module PIL.ImageChops)

N

 	

 	name (PIL.PcfFontFile.PcfFontFile attribute)

 	

 	new() (in module PIL.Image)

O

 	

 	o16be() (in module PIL._binary)

 	o16le() (in module PIL._binary)

 	o32be() (in module PIL._binary)

 	o32le() (in module PIL._binary)

 	

 	o8() (in module PIL._binary)

 	offset() (in module PIL.ImageChops)

 	

 	(PIL.Image.Image method)

 	open() (in module PIL.GdImageFile)

 	

 	(in module PIL.Image)

 	(in module PIL.WalImageFile)

P

 	

 	palette (in module PIL.Image)

 	PaletteFile (class in PIL.PaletteFile)

 	Parser (class in PIL.ImageFile)

 	paste() (PIL.Image.Image method)

 	

 	(PIL.ImageTk.PhotoImage method)

 	(PIL.ImageWin.Dib method)

 	PcfFontFile (class in PIL.PcfFontFile)

 	Pen (class in PIL.ImageDraw2)

 	PhotoImage (class in PIL.ImageTk)

 	pieslice() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	

 	(PIL.ImageDraw2.Draw method)

 	PIL._binary (module)

 	PIL.BdfFontFile (module)

 	PIL.ContainerIO (module)

 	PIL.ExifTags (module)

 	PIL.ExifTags.GPSTAGS (class in PIL.ExifTags)

 	PIL.ExifTags.TAGS (class in PIL.ExifTags)

 	PIL.FontFile (module)

 	PIL.GdImageFile (module)

 	PIL.GimpGradientFile (module)

 	PIL.GimpPaletteFile (module)

 	PIL.Image (module)

 	PIL.ImageChops (module)

 	PIL.ImageCms (module)

 	PIL.ImageColor (module)

 	PIL.ImageDraw (module)

 	PIL.ImageDraw.Draw (class in PIL.ImageDraw)

 	PIL.ImageDraw.ImageDraw() (in module PIL.ImageDraw)

 	PIL.ImageDraw2 (module)

 	PIL.ImageEnhance (module)

 	PIL.ImageFile (module)

 	PIL.ImageFileIO (module)

 	PIL.ImageFilter (module)

 	PIL.ImageFont (module)

 	PIL.ImageGrab (module)

 	PIL.ImageGrab.grab() (in module PIL.ImageGrab)

 	PIL.ImageGrab.grabclipboard() (in module PIL.ImageGrab)

 	

 	PIL.ImageMath (module)

 	PIL.ImageMorph (module)

 	PIL.ImageOps (module)

 	PIL.ImagePalette (module)

 	PIL.ImagePath (module)

 	PIL.ImagePath.Path (class in PIL.ImagePath)

 	PIL.ImageQt (module)

 	PIL.ImageSequence (module)

 	PIL.ImageShow (module)

 	PIL.ImageStat (module)

 	PIL.ImageStat.Stat (class in PIL.ImageStat)

 	PIL.ImageTk (module)

 	PIL.ImageTransform (module)

 	PIL.ImageWin (module)

 	PIL.JpegPresets (module)

 	PIL.OleFileIO (module)

 	PIL.PaletteFile (module)

 	PIL.PcfFontFile (module)

 	PIL.PSDraw (module)

 	PIL.PyAccess (module)

 	PIL.TarIO (module)

 	PIL.TiffTags (module)

 	PIL.WalImageFile (module)

 	PixelAccess (built-in class)

 	PngInfo (class in PIL.PngImagePlugin)

 	point() (PIL.Image.Image method)

 	

 	(PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	polygon() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	

 	(PIL.ImageDraw2.Draw method)

 	posterize() (in module PIL.ImageOps)

 	PSDraw (class in PIL.PSDraw)

 	putalpha() (PIL.Image.Image method)

 	putdata() (PIL.Image.Image method)

 	puti16() (in module PIL.FontFile)

 	putpalette() (PIL.Image.Image method)

 	putpixel() (PIL.Image.Image method)

Q

 	

 	QuadTransform (class in PIL.ImageTransform)

 	quantize() (PIL.Image.Image method)

 	

 	query_palette() (PIL.ImageWin.Dib method)

R

 	

 	RankFilter (class in PIL.ImageFilter)

 	rawmode (PIL.GimpPaletteFile.GimpPaletteFile attribute)

 	

 	(PIL.PaletteFile.PaletteFile attribute)

 	read() (PIL.ContainerIO.ContainerIO method)

 	readline() (PIL.ContainerIO.ContainerIO method)

 	readlines() (PIL.ContainerIO.ContainerIO method)

 	rectangle() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	

 	(PIL.ImageDraw2.Draw method)

 	(PIL.PSDraw.PSDraw method)

 	register() (in module PIL.ImageShow)

 	register_extension() (in module PIL.Image)

 	

 	register_mime() (in module PIL.Image)

 	register_open() (in module PIL.Image)

 	register_save() (in module PIL.Image)

 	render() (PIL.ImageDraw2.Draw method)

 	reset() (PIL.ImageFile.Parser method)

 	resize() (PIL.Image.Image method)

 	rms (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	rotate() (PIL.Image.Image method)

S

 	

 	save() (PIL.FontFile.FontFile method)

 	

 	(PIL.Image.Image method)

 	(PIL.ImagePalette.ImagePalette method)

 	save_image() (PIL.ImageShow.Viewer method)

 	screen() (in module PIL.ImageChops)

 	seek() (PIL.ContainerIO.ContainerIO method)

 	

 	(PIL.Image.Image method)

 	setfill() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	setfont() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	

 	(PIL.PSDraw.PSDraw method)

 	setink() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	settransform() (PIL.ImageDraw2.Draw method)

 	shape() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	Sharpness (class in PIL.ImageEnhance)

 	show() (in module PIL.ImageShow)

 	

 	(PIL.Image.Image method)

 	(PIL.ImageShow.Viewer method)

 	show_file() (PIL.ImageShow.UnixViewer method)

 	

 	(PIL.ImageShow.Viewer method)

 	show_image() (PIL.ImageShow.Viewer method)

 	

 	sine() (in module PIL.GimpGradientFile)

 	size (in module PIL.Image)

 	solarize() (in module PIL.ImageOps)

 	sphere_decreasing() (in module PIL.GimpGradientFile)

 	sphere_increasing() (in module PIL.GimpGradientFile)

 	split() (PIL.Image.Image method)

 	stddev (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	subtract() (in module PIL.ImageChops)

 	subtract_modulo() (in module PIL.ImageChops)

 	sum (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	sum2 (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	symbol() (PIL.ImageDraw2.Draw method)

 	sz() (in module PIL.PcfFontFile)

T

 	

 	TarIO (class in PIL.TarIO)

 	tell() (PIL.ContainerIO.ContainerIO method)

 	

 	(PIL.Image.Image method)

 	text() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	

 	(PIL.ImageDraw2.Draw method)

 	(PIL.PSDraw.PSDraw method)

 	textsize() (PIL.ImageDraw.PIL.ImageDraw.Draw method)

 	

 	(PIL.ImageDraw2.Draw method)

 	thumbnail() (PIL.Image.Image method)

 	tobitmap() (PIL.Image.Image method)

 	tobytes() (PIL.Image.Image method)

 	

 	(PIL.ImagePalette.ImagePalette method)

 	(PIL.ImageWin.Dib method)

 	

 	tolist() (PIL.ImagePath.PIL.ImagePath.Path method)

 	tostring() (PIL.Image.Image method)

 	

 	(PIL.ImagePalette.ImagePalette method)

 	Transform (class in PIL.ImageTransform)

 	transform() (PIL.Image.Image method)

 	

 	(PIL.ImagePath.PIL.ImagePath.Path method)

 	(PIL.ImageTransform.Transform method)

 	transpose() (PIL.Image.Image method)

 	truetype() (in module PIL.ImageFont)

U

 	

 	UnixViewer (class in PIL.ImageShow)

 	

 	UnsharpMask (class in PIL.ImageFilter)

V

 	

 	var (PIL.ImageStat.PIL.ImageStat.Stat attribute)

 	verify() (PIL.Image.Image method)

 	

 	Viewer (class in PIL.ImageShow)

W

 	

 	which() (in module PIL.ImageShow)

 	

 	width() (PIL.ImageTk.BitmapImage method)

 	

 	(PIL.ImageTk.PhotoImage method)

X

 	

 	XVViewer (class in PIL.ImageShow)

 Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

 _static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Home »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Home »

 All modules for which code is available

		PIL.BdfFontFile

		PIL.ContainerIO

		PIL.FontFile

		PIL.GdImageFile

		PIL.GimpGradientFile

		PIL.GimpPaletteFile

		PIL.Image

		PIL.ImageChops

		PIL.ImageCms

		PIL.ImageColor

		PIL.ImageDraw2

		PIL.ImageEnhance

		PIL.ImageFile

		PIL.ImageFileIO

		PIL.ImageFilter

		PIL.ImageFont

		PIL.ImageMath

		PIL.ImageMorph

		PIL.ImageOps

		PIL.ImagePalette

		PIL.ImageSequence

		PIL.ImageShow

		PIL.ImageTk

		PIL.ImageTransform

		PIL.ImageWin

		PIL.OleFileIO

		PIL.PSDraw

		PIL.PaletteFile

		PIL.PcfFontFile

		PIL.PngImagePlugin

		PIL.TarIO

		PIL.WalImageFile

		PIL._binary

 © Copyright 1997-2011 by Secret Labs AB, 1995-2011 by Fredrik Lundh, 2010-2013 Alex Clark.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

